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Abstract 
  
Spatial distributional semantic models represent word meanings in a vector space. While able to model many basic semantic tasks, 
they are limited in many ways, such as their inability to represent multiple kinds of relations in a single semantic space, and to directly 
leverage indirect relations between two lexical representations.  To address these limitations, we propose a distributional graphical 
model that encodes lexical distributional data in a graphical structure and uses spreading activation for determining the plausibility of 
word sequences. We compare our model to existing spatial and graphical models by systematically varying parameters that 
contributing to dimensions of theoretical interest in semantic modeling. In order to be certain about what the models should be able to 
learn, we trained each model on an artificial corpus describing events in an artificial world simulation containing experimentally 
controlled verb-noun selectional preferences. The task used for model evaluation requires recovering observed selectional preferences 
and inferring semantically plausible but never observed verb-noun pairs. We show that the distributional graphical model performed 
better than all other models. Further, we argue that the relative success of this model comes from its improved ability to access the 
different orders of spatial representations with the spreading activation on the graph, enabling the model to infer the plausibility of 
noun-verb pairs unobserved in the training data. The model integrates classical ideas of representing semantic knowledge in a graph 
with spreading activation, and more recent trends focused on extraction of lexical distributional data from large natural language 
corpora. 
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Spatial vs. Graphical Representation of Distributional Semantic Knowledge 
 
Representing and processing semantic information is fundamental to language. The sequence ‘babies sleep’ is more easily 

processed than ‘cars sleep’, and the sequence ‘ideas sleep’ is even more difficult to process. Because all three sequences are 
grammatical and share the same syntactic structure, it is most natural to explain the difference in ease of processing at the semantic 
level. While neither cars nor ideas can sleep, it is easier for most people to metaphorically imagine a car sleeping than an idea 
sleeping. This example illustrates that semantic relatedness between words is an important part of people’s ability to process and 
understand language.  

The large number of words in natural languages, and the number of different ways that words can be related and paired, 
presents a daunting challenge for modeling semantic relatedness. Distributional models of semantic memory have been quite 
successful at modeling coarse-grained semantic tasks such as categorization (Landauer, Foltz & Laham, 1998; Lund & Burgess, 1996; 
Huebner & Willits, 2018) and semantic priming (Griffiths, Steyvers & Tenenbaum, 2007; Hutchison, Balota, Cortese, & Watson, 
2007; Kumar et al., 2020; Landauer, Foltz & Laham, 1998; Mandara, Keuleers, & Brysbaert, 2017). And despite the success and wide 
applicability of both co-occurrence-based vector space models and more recent neural network models like Word2Vec (Mikolov et al., 
2013), BERT (Devlin et al., 2018) and GPT-3 (Brown et al. 2020), these models still have known shortcomings. For example, these 
models often fail at rudimentary language tasks involving structured relations or compositionality (Lake & Murphy, 2021; Gershman 
& Tenenbaum, 2015; Marcus, 2020). And while the semantic coherence of large language models like GPT-4 is truly impressive, the 
fact that they require orders of magnitude more data in order to achieve that performance raises serious questions about their 
feasibility as models of human semantic representation. As a consequence, questions remain about the capacity of these kinds of 
models to represent the various kinds of semantic relations that humans use to represent and comprehend language. 

In this paper, we address the question of what kind of semantic representations and processes might best support the human 
ability to produce graded semantic plausibility judgments of multi-word sequences. We discuss the advantages and disadvantages of 
representing word co-occurrence information and word similarity information in high-dimensional vector spaces, versus other 
approaches that represent this information in a connected graph (Anderson & Bower, 1974; Collins & Loftus, 1975; De Deyne, 
Navarro, Perfors & Storms, 2016; Gentner, 1975; Rotaru, Vigliocco, & Frank, 2018; Rumelhart & Levin, 1975). We then present a set 
of experiments designed to test the capacities of these models at predicting quantitative differences in semantic plausibility of 
predicate-argument pairs. 

The paper is organized as follows: First, we describe the importance of lexical semantic relatedness in determining the 
semantic plausibility of a sentence. Second, we review the distributional approach to semantic modeling, and describe some features 
or properties that differentiate how lexical semantic relatedness is acquired by different semantic models. The major properties we 
examined are the representational structure of the model (graphical vs. spatial), and the type of information that is encoded (co-
occurrence vs. similarity). Third, we discuss the construction of an artificial corpus that we built for the purpose of training and 
evaluating our models. Fourth, we report model performances in a selectional preference task that requires learning of semantic 
relations instantiated in the training data and making inferences about unobserved relations. Fifth, we explore the individual 
contributions of representational structure and information encoding type and their interaction to performance in this task. Finally, we 
discuss our results more broadly in the context of models of semantic development. 
 
Simple Sentences and Syntagmatic Relatedness 

The study of semantic knowledge representation can be approached from multiple perspectives. One important starting point 
is establishing what behavioral or empirical phenomenon one is trying to model or explain. Historically, researchers have examined a 
diverse array of phenomena, including the learning of word meanings, semantic priming, categorization and typicality effects, 
judgements about factuality or plausibility, and sentence production and comprehension. In this paper, we focused on how 
representations and processes underlying lexical semantic relatedness contribute to plausibility judgments of multi-word sequences.  

There have been many proposals for how to characterize the nature and kinds of relations that can affect the semantic 
plausibility of multi-word sequences. One of the most foundational distinctions is between words that have a syntagmatic relationship 
and words that have a paradigmatic relationship (Saussure, 1983; Sahlgren, 2006). Simply put, words that are syntagmatically related 
are words that can “go together” in language, operationally defined as linguistic co-occurrence or thematic relatedness. Syntagmatic 
relatedness is most often and most easily used to describe noun-verb relations (drink-coffee, walk-dog), but can also be used to 
describe adjective-noun relations (hot-coffee, brown-dog) and noun-noun relations (cup-coffee, leash-dog) where relatedness is 
defined as co-occurrence or joint participation in the same event. Syntagmatic relatedness can be distinguished from paradigmatic 
relatedness, which links words that are substitutable with one another in the linguistic structures in which they occur. In the previous 
examples, tea is paradigmatically related to coffee, because tea and coffee can be substituted with minimal impact on the meaning of 
the sentences or their semantic plausibility. 

Syntagmatic and paradigmatic relations are related concepts. For instance, under many theories (like those using some form 
of distributional learning), syntagmatic relatedness can be inferred based on a combination of paradigmatic and syntagmatic 
relatedness. For instance, based on previous knowledge of the paradigmatic relatedness of dog-puppy, and the syntagmatic relatedness 
of dog-leash, one can infer that puppy and leash are also likely to be syntagmatically related. 
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When judging the semantic plausibility of sentences, syntagmatic relatedness is probably more influential. The sentences 
‘Mary drank the coffee’ and ‘Mary walked the dog’ are plausible sentences, and ‘Mary drank the dog’ and ‘Mary walked the coffee’ 
are not, because they mismatch in their syntagmatic rather than paradigmatic relations. In other words, it seems to make more sense to 
describe the plausibility of sentences in terms of how well the words drink and coffee go together (compared to drink and dog), and 
not in terms of their substitutability.  
 
Selectional Preference 

In this work, we were interested in how well different distributional semantic models acquire the selectional constraints on 
noun-verb pairs from linguistic data. We will use the term ‘selectional preference’ to describe constraints that determine which word 
pairs result in semantically plausible combinations (e.g. ‘babies sleep’) and which do not (e.g. ‘ideas sleep’). For example, baby is a 
better argument than idea for the verb sleep. Selectional preference is a quantitative (i.e. graded) phenomenon, and therefore requires a 
numerical score for each predicate-argument pair (Erk, S. Padó & U. Padó, 2010). Thus, it is critical that we derive model judgments 
on a continuous as opposed to discrete (“related vs. unrelated”) scale.  

We can derive a measurement of selectional preference from most semantic models equipped with quantitative measures of 
lexical relatedness. For example, many models represent words as vectors, and their relatedness as distances in a vector space 
(Osgood, 1957; Deese, 1962; Smith, Shoben, & Rips, 1974; Griffiths, Steyever, & Tenenbaum, 2007; Landauer & Dumais, 2007; 
Jones & Mewhort, 2007; Mikolov et al., 2013, Huebner & Willits, 2018). Other models represent semantic relations in a graphical 
structure (network or tree-like), with connections that vary in strength, and/or with a spreading activation mechanism that allows for a 
quantitative degree of relatedness between words (Collins &  Quillian, 1969, Collins & Loftus, 1975, Elman, 1990; McRae, de Sa & 
Seidenberg, 1997 Miller 1995, Nelson, McEvoy & Schreiber, 2004, Steyvers & Tenenbaum 2005; Rumelhart & Todd, 1993; Rogers 
& McClelland, 2004). These models, despite varying considerably in their operational definitions of semantic relatedness, all provide 
a way to measure the relatedness between arbitrary word pairs. Therefore, it is possible to use model-derived relatedness scores as a 
proxy for selectional preference.  
 
Research Goals 

In this work, we use model-derived selectional preference judgments to evaluate the representational capabilities of different 
distributional semantic models. Importantly, to perform well in our evaluation, a model must not only assign higher semantic 
relatedness to word pairs that frequently co-occur, but also to word pairs that are more semantically plausible despite not having been 
observed during training (e.g. ‘cars sleep’ is more plausible than ‘ideas sleep’). By comparing a model’s selectional preferences to the 
corpus on which it was trained, we can make inferences about which models or properties of models are most useful for acquiring 
syntagmatic knowledge, and deploying that knowledge to make inferences about semantic plausibility. 
Broadly, our work is a systematic comparison of many distributional models of semantics, with a specific focus on their ability to 
represent syntagmatic relations and using their learned representations to infer the semantic plausibility of observed and novel word 
sequences. There are four major differences between our approach and that of previous studies. First, our work systematically explores 
differences between graphical models built from language-internal distributional data and more traditional spatial models built on the 
same amount and kind of data. While several graphical models have been proposed in the semantic modeling literature, they have 
rarely been compared to spatial models while systematically controlling for differences in their training data, learning algorithm, and 
other modeling parameters. Second, we conducted a systematic comparison of model properties and parameters to better understand 
their individual contributions and their interactions. The third difference is a focus on the quantitative rather than qualitative nature of 
semantic relatedness. Previous work has focused on qualitative analyses, such as distinguishing “related” versus “unrelated” word 
pairs (Erk, S. Padó & U. Padó, 2010; Huebner & Willits, 2018; Bullinaria & Levy, 2007; Bullinaria & Levy, 2012). However, in this 
work we are more interested in the ability of models to reproduce a gradient of selectional preference that can be used to rank-order 
multiple word pairs by semantic plausibility. For example, given the pairs ‘trap rabbit’ (observed), ‘trap boar’ (unobserved, more 
plausible), ‘trap water’ (unobserved, less plausible), previous evaluations required that a model only produce relatedness scores that 
differentiate the observed pairs from the unobserved. That is, a model only needed to correctly judge ‘trap rabbit’ > ‘trap boar’ and, 
separately, ‘trap rabbit’ > ‘trap water’. In contrast, to succeed in our evaluation, a model must produce the correct rank-ordering ‘trap 
rabbit’ > ‘trap boar’ > ‘trap water’.  

The fourth, and perhaps biggest difference between the present work and previous work, is the employment of carefully 
controlled artificial corpora to explore the differences between the models. In constrast, previous work has focused on training models 
on naturalistic linguistic corpora. While this has obvious benefits (e.g. providing the semantic model with input that humans are likely 
to experience), it leaves open the question of how to evaluate whether a model has come up with the “right” evaluation of relatedness. 
If two models are trained on the same corpora, and one model says that the most syntagmatically-related verb for dog should be 
barked and another model says chased, which model is correct? This can be an especially difficult problem to solve when one 
considers that the training corpus, too, is an implicit part of the model. Without knowing if the training corpus is a representative 
sample of the learning environment, it is difficult to assess which model has made more accurate predictions about that environment. 
In the current work, we follow in the path of previous work that addresses this problem by utilizing an artificial language approach to 
understand model dynamics (Elman, 1991; Rohde, D., 2002; Rubin, Kievit-Kylar, Willits, & Jones, 2014; Mao, Huebner, & Willits, 
2022).  



SPATIAL VS. GRAPHICAL  
 

 

 

The corpus we used to train our models was specifically constructed for the purpose of evaluating semantic plausibility: Each 
sentence describes an event in a simulated world of hunter-gatherers that evolves according to deterministic rules. As the simulated 
world progresses, sentences are to describe events in that world using English words and pseudo-English grammatical rules. 
Importantly, because we created the set of rules that progress the simulated world from which the corpus is created, we have full 
access to knowledge about which possible noun-verb pairs are semantically more plausible. Put differently, we know precisely what 
the ground truth is with regard to semantic relations between nouns and verbs, and we can use this knowledge to test which models are 
better at recovering this structure from the corpus. 
 
Semantic Modeling Theoretical Parameter Space 

When semantic models are used to predict data and their performance is compared, it is not always clear why a particular 
model performed better than another. Unlike well-controlled experiments, computational models are complex, and usually vary in 
many ways at once. 

 To assist us in thinking about this issue, it can be valuable to think of semantic models themselves as existing in a multi-
dimensional theoretical property space (Bullinaria & Levy, 2007, 2012; Rubin et al., 2014). While some properties of models have 
received more attention than others, each can impact a model’s representational capabilities, often in unpredictable ways. Also, lack of 
understanding about the contribution of each property of a model may lead to attributing a model’s successes and failures to incorrect 
factors (Jones, Gruenenfelder & Recchia, 2011). To provide a sense of the vastness of the theoretical space, and deeper insight into 
parametric relationships between existing semantic models, we list several semantic models and their choices on six important 
theoretical dimensions. These are shown in Table 1. It is important to note that these are not the only ways in which these models can 
vary. But the six dimensions highlight ways that semantic models tend to vary in theoretically interesting ways that affect what the 
models can and cannot do well. 

The first theoretical dimension is the Information Source. This is the nature of the input used to build the model. There have 
traditionally been three sources from which to derive the information used to build a semantic model: 1) hand-labeled relations 
between words and concepts, chosen by the model’s creator either for theoretical or demonstrative reasons, 2) normative relations, 
where relations between words are derived from empirically obtained normative experiments, such as word association norms 
(Nelson, McEvoy & Schreiber, 2004) or semantic feature norms (McRae, Cree, Seidenberg & McNorgan, 2005), and 3) linguistic 
corpora, where relations are derived from linguistic data. 

The second theoretical dimension is the model’s Representational Structure. This is the kind of data structure in which the 
semantic information is encoded. There have been two kinds of structures used by the vast majority of semantic models: 1) graphical 
models like structured trees (Collins & Quillian, 1969; Xu & Tenenbaum, 2007) and spreading activation on networks (Anderson, 
1983; Collins & Loftus, 1975), and 2) vector spaces where each word or concept is represented as a point in some high-dimensional 
space, such as Osgood’s Semantic Differential (1957), Smith, Shoben, and Rip’s Feature Model (1974), and distributional language 
models like Latent Semantic Analysis (Landauer & Dumais, 1997) and Word2Vec (Mikolov et al., 2013). 

With regard to the graph vs. space distinction, one potentially confusing class of models is connectionist and neural network 
models. Neural networks are, by any reasonable definition, graphical models. They have nodes, edges, and an algorithm for how 
activation spreads across the nodes. However, a distinction we would like to draw regarding whether a model is a spatial or a graphical 
model is how it is used when determining the relatedness between two words. If this is accomplished by applying the model’s 
algorithm for spreading activation among the nodes and using a node’s activity level as the measure of relatedness between two 
words/concepts, then the model should be thought of as a graphical model. For example, in the network studied by Rogers and 
McClelland (2004), when the inputs ‘canary’ and ‘is’ were activated, this would activate the output node yellow. In this model, the 
flow of activation from input to output is conceptually similar to spreading activation models. Likewise, in a next-word prediction 
model like the simple recurrent network (SRN, Elman, 1990) or GPT models (Brown et al., 2020; Radford et al., 2019), when an input 
is activated, and the predicted output activation is used as the measure of relatedness between the input and output, the model is 
properly thought of as a graph. However, some would argue that some neural network models are better thought of as a space. For 
example, in the Word2Vec model (Mikolov, 2013), the learned weights of a word in the network are used as a vector representation of 
words, which enables the computation of similarity between two words in terms of the similarity of their vector representations. 
Similarly, Huebner and Willits (2018) used the hidden state activations learned by the SRN to compute relatedness between word 
pairs. In such cases, it is more appropriate to think of these models as vector space models. While the vectors may have been derived 
from an algorithmic process on a graphical model, the resulting representation, and how it is used to determine similarity, is the same 
as in other spatial models. Thus, whether a connectionist or neural network model is more properly thought of as a graph or as a space 
depends on how the model is being used to define a construct of interest (e.g., semantic relatedness).  

The third theoretical dimension is the Information Encoding Type of the model (hereafter referred to as Information 
Type). This dimension determines the primitive elements or building blocks of the model, and what relations between those primitive 
elements are encoded. Models have varied widely in this regard, in terms of the primitive elements of the model, including words, 
documents/discourses, objects and events in the world, semantic features, and specific kinds of semantic relations and roles. Likewise, 
the relations between those elements have varied widely, including a priori (theory-based) linkages, normative association strength, 
measures of association or co-occurrence in the environment, and similarity. Often it is argued that this dimension is the most 
distinguishing and critical aspect of a model, but model comparisons rarely vary only this dimension while holding all others constant.  
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Table 1. Examples of Published Semantic Models, Classified on Six Theoretical Dimensions 
 

Classical Models 
Information 

Source 
Representati
on Structure 

 
Encoding Type 

Abstraction 
Mechanism 

Learning  
Mechanism 

Relatednes
s Measure 

Semantic Feature Model 
Smith et al., 1974 

Hand-labeled 
Relations 

Vector Space Concepts Defined 
as Feature Vectors 

Predefined 
Abstract Concepts 

Unspecified Vector 
Distance 

Hierarchical Semantic 
Network 
Collins & Quillian, 1969 

Hand-labeled 
Relations 

Multiple 
Relation-
Labeled 

Connected 
Graph 

Binary Predicate- 
Argument 
Relations 

Predefined 
Abstract Concepts 

Unspecified Distance in 
Graph 

Spreading Activation 
Network 
Collins & Loftus, 1975 

Hand-labeled 
Relations 

Unlabeled/La
beledConnect

ed Graphs 

Word Forms and 
Concepts in 

Separate Graphs 

Predefined 
Abstract Concepts 

Unspecified Spreading 
Activation 

Spreading Activation 
Network 
Anderson, 1983 

Hand-labeled 
Relations 

Multiple 
Relation-
Labeled 

Connected 
Graph 

Predicate- 
Argument 
Relations 

Predefined 
Abstract Concepts 

Unspecified Spreading 
Activation 

Wordnet  
Miller, 1995 

Hand-labeled 
Relations 

Taxonomy 
Connected 

Graph 

Super/Subordinate 
Category 
Relations 

Predefined 
Abstract Concepts 

Unspecified Connection 
vs. No 

Connection 

Distributed Feature 
Models 

      

Semantic Relation 
Network 
Rumelhart & Todd, 1993 
Rogers & McClelland, 2004 

Hand-labeled 
Relations 

Connected 
Graph 

Concept+Relation 
to Feature 

Associations 

Latent Variables 
(Hidden Units) 

Error-driven 
Association 

Learning 

Feature 
Activation 

Given 
Concept 

+Relation 

Semantic Feature Network 
Hinton & Shallice, 1991 
Plaut & Booth, 2000 

Hand-labeled 
Relations 

Connected 
Graph 

Concept-Feature 
Assoc. Strength 

Latent Variables 
(Hidden Units) 

Error-driven 
Association 

Learning 

Network 
Settling 
Time 

Semantic Feature Network 
McRae et al., 1997 
Cree et al., 1999 

Normative 
Relations 

Connected 
Graph 

Concept-Feature 
Assoc. Strength 

Latent Variables 
(Hidden Units) 

Error-driven 
Association 

Learning 

Network 
Settling 
Time 

LISA 
Hummel & Holyoak, 2003 

Hand-labeled 
Relations 

Connected 
Graph 

Relational 
Associations 

Predefined 
Abstract Concepts 

Hebbian 
Learning 

Network 
Settling 
Time 

 
Distributional Models 

      

Latent Semantic Analysis  
Landauer & Dumais, 1997 

Linguistic 
Corpora 

Vector Space Log Entropy Word 
Doc. Co-occur. 

Latent Variables 
Derived via SVD 

Word-
Document 
Frequency 
Counting 

Vector 
Cosine 

Hyperspace Analogue to 
Language (HAL) 
Lund & Burgess, 1996 

Linguistic 
Corpora 

Vector Space Word Co-occur. 
Probability 

None Word-Word Co-
occurrence 
Counting 

Vector 
Distance 

Naïve Discrimination 
Learning 
Baayen et al., 2019 

Linguistic 
Corpora 

Vector Space Word Association 
Strength 

None Rescorla-
Wagner Model 

Vector 
Correlation 

BEAGLE 
Jones & Mewhort, 2007 

Linguistic 
Corpora 

Vector Space Word-Word 
Co-occurrence 

None Random Vector 
Accumulation 

Vector 
Cosine 

Probabilistic Topic Model Linguistic Vector Space Word-Document Latent Variables Word- Vector 
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Blei & Jordan., 2004 
Griffiths et al., 2007 

Corpora Co-occurrence (Topics) Derived  
via LDA 

Document- 
Topic MCMC 

Sampling 

Inner 
Product 

Word2Vec 
Mikolov et al., 2013 

Linguistic 
Corpora 

Vector Space Word-Context 
Predictability 

Latent Variables 
(Hidden Units) 

Error-driven 
Word Context 

Prediction 

Vector 
Cosine 

GloVe 
Pennington et al., 2016 

Linguistic 
Corpora 

Vector Space Word-Word 
Co-occurrence 

Latent Variables 
(Hidden Units) 

Error-driven Co-
occur. Ratio 
Prediction 

Vector 
Cosine 

Simple Recurrent Network 
Elman, 1990  
Huebner & Willits, 2018 

Linguistic 
Corpora 

 

Vector Space Word-Word 
Predictability 

Latent Variables 
(Hidden Units) 

Error-driven 
Learning via 
Prediction 

MDS / 
Vector 

Correlation 

GPT-2, 3, 4 
Brown et al., 2020 
Radford et al., 2019 

Linguistic 
Corpora 

Connected 
Graph 

Sequence 
Predictability 

Latent Variables 
(Hidden Units) 

Error-driven 
Learning via 
Prediction & 

RLHF 

Output 
Sequence 
Activation 

Given Input 
Sequence 

 
The fourth theoretical dimension is whether the model includes a proposed Abstraction Mechanism, and if so, the nature of 

that mechanism. Here, abstraction refers to the process of extracting representative information or dimensions from the primitive 
elements and relations, by which the representational structure becomes more concise at the cost of details. Some earlier models, such 
as traditional semantic relation networks, and connectionist models employing abstract semantic features, relations, and roles, have 
used predefined abstract features, without specifying the mechanisms by which these abstractions arise. Sometimes this is an explicit 
nativist claim (as in the labeled edges in Anderson & Bower, 1974); but in most cases model makers have included abstract features 
without theoretical commitments to their origin. Most models, however, have some form of an abstraction mechanism whereby 
abstract features can be learned or inferred from the data. Amongst others, the mechanisms that have been used for this purpose 
include hidden layers in neural networks, latent dimensions identified by SVD, or related processes like Latent Dirichlet Allocation 
(Blei, Ng, & Jordan, 2003) or random vector accumulation (Jones, Kinstch, & Mewhort, 2006). A few models explicitly posit no 
abstraction mechanism (Baayen et al., 2016; Lund & Burgess, 1996). 

The fifth theoretical dimension is whether the model includes a proposed Learning Mechanism concerning how the 
semantic knowledge and information is acquired, and if so, the nature of that learning mechanism. Early semantic memory models 
tended to focus on the structure of semantic memory and proposed no explicit learning mechanism to explain how semantic structure 
is acquired. Connectionist and neural network models almost always include a learning mechanism, one involving either unsupervised 
Hebbian learning, or supervised error-driven learning. Learning in distributional semantic models is often based on self-supervised 
prediction and error-backpropagation (in the case of neural network models), or on counting word co-occurrences and explicit matrix 
factorization. 

The sixth theoretical dimension is the model’s Relatedness Measure. How is relatedness between words and/or concepts 
operationalized? This property of a model is not independent of the others, in particular a model’s Representational Structure. There 
are ways of measuring relatedness that work in a space but not a graph, and vice versa. Spatial models all use some way of comparing 
vectors in vector space, such as the distance between points or the cosine of the angle between the vectors. Graphical models usually 
use graphical distance or some type of spreading activation algorithm, either of the classical or connectionist variety. Some network 
models, usually described as “attractor” models, have used other measures of the model’s behavior, such as the amount of time the 
model takes to “settle” into a stable state where activations are no longer changing (Cree et al., 1999; Plaut & Booth, 2000). 

These six dimensions capture a tremendous amount of the theoretical variation in semantic models that have been proposed. 
In principle, the theoretical choices in one dimension are largely independent of the choices in the others (with the noted exception of 
the Relatedness Measure’s dependence on the Representational Structure). For example, graphical and spatial data structures are both 
compatible with using linguistic, nonlinguistic, or normative data. Both data structures are compatible with a wide range of 
Information Types that can be represented, and whether and how learning and abstraction occur. However, despite this potential 
independence, choices on these dimensions tend to be very correlated in practice. This makes it hard to determine what makes one 
model outperform another, as they tend to vary along multiple correlated dimensions. To properly assess the theoretical questions 
involving single dimensions requires controlling the influence of other theoretical choices and isolating the dimension of interest. 

In this work, we attempt this endeavor. We are interested in examining the effects of two of these dimensions, namely 
Representational Structure (space vs. graph), and Encoding Type (word co-occurrences vs. similarity based on word co-occurrence). 
Thus, we create four main classes of models: a co-occurrence space model, a similarity space model, a co-occurrence graph model, 
and a similarity graph model. Our motivations for systematically exploring these two dimensions are both practical and theoretical. 
From a practical standpoint, graphical models are under-represented in contemporary semantic modeling, especially in research on 
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automated information extraction from large naturalistic language data. Spatial models predominate in this area due to the simplicity 
and efficiency of algorithms used for training on large, unstructured datasets. This state of affairs exists primarily due to practical 
reasons (e.g., availability of efficient algorithms for training and/or inference) but does not reflect theoretical or empirical advantages 
of spatial over graphical models. As such, the paucity of graphical models is potentially concealing unknown benefits that would 
result if they could be made to perform as efficiently as contemporary spatial models. Specifically, graphical models are rarely trained 
on or constructed with word co-occurrence data, and even less rarely using large corpora of natural language. To address this paucity 
of research, we trained and evaluated a graphical model on distributional linguistic data (word co-occurrence data). In the upcoming 
sections, we discuss theoretical considerations for our proposal. We will argue that graphical models, while under-represented in the 
literature, may be useful for addressing limitations on the representational abilities of contemporary spatial models.   
 
A Limitation of Spatial Models 

All spatial models represent words as vectors, whose dimensions may be populated with features specified directly by the 
modeler, from norming studies, or from naturalistic data like linguistic corpora. For example, the dimensions of a feature-based vector 
for fish might consist of the proportion of raters who judged fish on some feature dimension (e.g., ‘can-fly’, ‘can-swim’, ‘has-beak’). 
Most proposed spatial models derive their semantic information from linguistic data from a naturalistic corpus, such as how often fish 
co-occurs with other words, or the number of times fish occurs in each of a set of documents. Most spatial models normalize these co-
occurrence counts in some manner, such as converting co-occurrences to pointwise mutual information values (Bullinaria & Levy, 
2007). 

Given the large number of dimensions in models trained with vocabulary sizes that are often in the tens of thousands, 
dimensionality reduction is typically performed after vectors are populated with co-occurrence counts. Typically, this involves using 
an algorithm like Singular Value Decomposition (SVD, Landauer & Dumais, 1997), Latent Dirichlet Allocation (LDA, Blei et al, 
2003), or Random Vector Accumulation (RVA, Jones & Mewhort, 2007).  In addition to reducing the size of the vectors, 
dimensionality reduction also serves several other useful purposes. These procedures reduce the sparsity of semantic vectors (which, if 
unreduced, typically contain mostly zeros). Another consequence is that dimensionality reduction serves as a method for generating 
more abstract representations, since the resulting dimensions serve as latent variables that aggregate information in multiple rows or 
columns with similar covariance. For example, in a co-occurrence matrix where robin, eagle, and crow all co-occur with wing, fly, 
feathers, and beak, the columns for these words can end up being combined into one or more abstract latent dimensions on which 
words related to birds load highly compared to other words like airplane or penguin which share fewer features with birds.  

Despite their widespread use in both NLP applications and cognitive modeling, spatial models suffer important limitations 
with respect to accounting for the full range of human semantic abilities. One critical issue is that spatial models cannot distinguish - 
in a principled fashion - between different types of semantic relations (such as syntagmatic vs. paradigmatic) in the same semantic 
space. Vector distance in a single semantic space typically represents some combined measure of multiple different types of relations, 
or emphasizes one or more relation types more strongly than others. To make this point clear, consider a semantic model whose 
similarity scores are used to guess the right answer to a multiple-choice test, where the cue is fast and the choices are speedy, slow, 
brown, and pointy. If the question is “What is the synonym?”, versus “What is the antonym?”, the right answer changes, and the 
semantic model cannot possibly use the most similar word to get both answers correct. 

For a model to make principled distinctions between different kinds of relations, it would require one vector space for each 
relation type - an inelegant solution, especially if the number of relations one wishes to represent is large. Defenders of spatial theories 
of semantic cognition could question the necessity of principled distinctions between different types of lexical relations. However, 
their psychological reality is supported by the demonstrations that humans represent syntagmatic and paradigmatic relations and use 
them to construct indirect semantic relations - a signature of human cognition (Balota & Lorch 1986; McNamara & Altarriba, 1988; 
Chwilla & Kolk 2002). 

The idea that spatial models struggle to distinguish different types of relations and to form indirect relations based on those 
distinctions is supported by their poor performance on tasks that require indirect relations. For example, Peterson, Chen & Griffiths 
(2020) examined the performance of spatial models (using Word2Vec and GloVe) on a relational analogy task, of the form 
king:man :: queen:woman. This type of evaluation was first reported by Mikolov et al. (2013), on the basis that a model used to 
account for the structure of human semantic memory should be able to represent higher-order similarities, such as the similarity 
between king-man and queen-woman. Peterson et al. measured the similarity between word pairs (represented as vector differences) 
and correlated these scores to human judgements. Consistent with the idea that spatial models cannot explicitly represent indirect 
relations, the authors found that the models did not perform consistently across a diverse set of analogy types. While the models 
successfully predicted human ratings for the relation type CASE (e.g., soldier-gun, plow-earth), they performed poorly on other 
relation types, such as SIMILAR (e.g., car-auto, ‘simmer-boil’), CONTRAST (e.g. old-young, buy-sell), and NON-ATTRIBUTE (e.g. 
fire-cold, corpse-life). Of note, the spatial models performed well with syntagmatic relations (soldier-gun, plow-earth), but poorly 
with paradigmatic relations (simmer-boil, old-young), and especially poorly with those that indirectly bind the two (e.g., fire-cold can 
be decomposed into fire-warm and warm-cold).   

It is possible that the failure of spatial models to succeed across all relational analogy types is because their representational 
substrate is suboptimal for flexibly combining different types of relatedness among words, and to use such combinations to infer the 
strength of indirectly related word pairs. Our experiments below are designed to test this limitation explicitly. Strong performance on 
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our selectional preference task requires 1) the ability to represent both paradigmatic and syntagmatic relatedness in the same model, 
and 2) leveraging both kinds of relatedness simultaneously to predict indirect relatedness. We show that spatial models tend to 
represent either syntagmatic or paradigmatic relatedness, and that their failure to represent both in a principled manner limits their 
ability to infer indirect relatedness. 
 
A Limitation of Graphical Models 

In graphical models, words correspond to nodes in a graph, and relations among words are represented as edges between 
nodes. One advantage of the graphical structure over spatial models is their straightforward encoding of indirect relations. For 
example, the indirect relation stripe-lion can be represented as a chain of edges that connects stripe to tiger, and tiger to lion. 

While this property of graphs makes them promising for inferring indirect relations, previously proposed graphical models 
suffer from a limitation not shared by existing spatial models: In contrast to spatial models, existing graphical models are typically 
populated either with hand-specified relations (Collins and Quillian, 1969; Steyvers & Tenenbaum 2005) or with normative word 
association data (Steyvers & Tenenbaum, 2005; Kenett et al., 2011; Kenett et al., 2016; Kenett et al., 2017; De Deyne, Perfors & 
Navarro, 2016; Kumar, Balota & Steyvers, 2020). Due to the differences in the materials used as input to graphical models compared 
to spatial models, which are often trained on large corpora as opposed to normative association data, it is impossible to make strong 
conclusions about whether differences in capabilities of the two model types are due to representational structure or information 
source. In addition, these normatively formed semantic networks are derived from established relations in human semantic memory 
and are thus useful only for characterizing the end-state of semantic development, rather than the process by which the semantic 
network is formed. Put differently, most graphical models of semantic knowledge were developed to account for the structure of 
semantic memory, not its development. In this work, we are concerned with the latter: How can we build semantic networks from 
language input with both efficiency and developmental plausibility in mind? 

The lack of contact with learning and developmental processes is a substantial issue for graphical models. The 
methodological gap between language input and linguistic representations must be filled for graphical models to be trained on large, 
naturalistic corpora. There have been few recent investigations of this issue. That said, while some work on semantic networks by 
Hills et al. (2010), De Deyne et al. (2016), and Rotaru et al. (2018) has examined the construction of graphs directly from corpus data, 
these models were not trained on the scale at which spatial models are often trained. This makes existing graphical models unsuitable 
for comparison with many spatial models trained on corpora consisting of many millions and even billions of words. Given the current 
state-of-the art, the best spatial models may outperform the best graphical models simply because they were trained on much larger 
corpora. Such a comparison however would be more valid if graphical models could be trained on data that is equally large as, and in 
a manner comparable to, the standard method for training spatial models.    
 
Combining Spatial and Graphical Models 

To summarize, while spatial models can be efficiently trained on large corpora of natural language, graphical models excel at 
making inferences about indirect semantic relations. A similar point was recently made by Kumar, Steyvers and Balota (2021), who 
wrote that: 

...it seems most likely that modern distributional models (specifically multimodal DSMs) provide a promising 
account of learning meaning from natural environments, whereas semantic network accounts provide useful 
conceptual tools to probe these representations and the processes that operate upon these representations. (p.19) 
Given the complementary strengths of the two modeling approaches, a system that can take advantage of both strengths would 

be an important contribution to the field of semantic modeling. Here, we argue that such an integration can be accomplished. We propose 
a combined model that inherits the complementary strengths of graphical and spatial models but does not suffer the limitations of the 
latter. Specifically, the data structure of the proposed model is graphical, but the mechanism for deriving the graphical structure is based 
on the same co-occurrence counting methods used to construct many spatial models from corpus data. We then test the feasibility of 
using co-occurrence frequency, and word similarity as the basis for connecting word nodes.  The latter is the subject of prior work 
(Rotaru et al., 2018), and our comparison builds upon and extends this work. 

Before describing the procedure used to train our proposed model, we first illustrate the way in which spatial distributional 
models are typically created. Given a toy corpus consisting of two sentences ‘dog chase cat. cat chase mouse’, a four-by-four matrix of 
bi-directional word-word co-occurrences with adjacent words (i.e., with window size = 1) can be formed, shown in Figure 1a. Here, the 
entry (i,j) in the matrix is the bi-directional co-occurrence between ith and jth word. From this word co-occurrence matrix, a word 
similarity matrix (shown in Figure 1b) can be constructed using some pairwise comparison between pairs of row vectors (such as the 
cosine of the angle between vectors). Thus, within the spatial framework, we can construct two kinds of models: The relatedness of 
words i and j can be obtained either from the co-occurrence count in cell (i, j) of the co-occurrence matrix, or the similarity score in cell 
(i, j) of the similarity matrix. Henceforth, we will refer to these two types of models as Co-occurrence Space and Similarity Space 
models, respectively. 
 
 
 
Figure 1. Illustration of the Construction of the Four Model Types



SPATIAL VS. GRAPHICAL  
 

 

 

 
 Co-occurrence  Similarity 
 
 
 
 
 
 
Space 

 

 dog cat mous
e 

chase 

dog 0 0 0 1 

cat 0 0 0 2 

mous
e 

0 0 0 1 

chase 1 2 1 0 

 

  

 dog cat mous
e 

chase 

dog 1 0.9 1 0 

cat 0.9 1 1 0 

mous
e 

1 1 1 0 

chase 0 0 0 1 

 
   dog chase cat……....   ()b 

                                                               cat chase mouse 
 
 
 
 
 
Graph 

 
Note. A schematic illustrating the construction of the four model types we investigated. The toy corpus used for model construction 
consists of two sentences, namely ‘dog chase cat’, and ‘cat chase mouse’. a) Co-occurrence Space. A word co-occurrence matrix, 
where rows correspond to words, and columns respond to their lexical contexts. Each element represents the frequency of co-
occurrence.  b) Similarity Space. A similarity matrix derived from the co-occurrence matrix in a). Each element represents the 
similarity between word vectors in the co-occurrence matrix.  c) Co-occurrence Graph. A graphical representation derived from the 
co-occurrence matrix. d)  
Similarity Graph. A graphical representation derived from the similarity matrix in b). 
 
Table 2. Model Types Investigated in the Study 
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n Source 
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Learning  
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counting 
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Note. Models are classified on six parameter dimensions, and manipulated in two dimensions. 
We can reuse the same matrices to construct corpus-derived graphical models. Because both the columns and rows refer to 

words we wish to represent, the co-occurrence matrix and the similarity matrix can each be considered an adjacency matrix of a graph. 
When deriving adjacency information from the co-occurrence matrix, the words become nodes in the graph, and are connected by an 
undirected weighted edge proportional to the value of the corresponding entry in the co-occurrence matrix (provided an entry is non-

(a) (b) 

(c) (d) 
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zero). We refer to the resulting model as a Co-occurrence Graph (illustrated in Figure 1c). Similarly, we can construct a graphical model 
in which the weights of edges are derived from the similarity score of the words in the similarity matrix. We refer to the resulting model 
as a Similarity Graph (illustrated in Figure 1d). 

In total, we consider four types of models that vary along two dimensions, namely Representational Structure (graph vs. space) 
and Encoding Type (co-occurrence vs. similarity) in the other. In Table 2, these four models are situated in the six-dimensional 
theoretical space from Table 1. 
 
Semantic Relatedness in Graphical Structures 

Like spatial models, relations represented in a semantic graph can be measured quantitatively. While relatedness in spatial 
models is computed by comparing vectors, relatedness in graphical models is quantified by the amount of activation that reaches a 
certain location in the graph.  How this is computed is important.  If relatedness in the graph is calculated as the edge strength between 
two directly connected words, then there is no difference between relatedness in the spatial and graphical models. However, graphical 
models often employ more sophisticated procedures, such as a spreading activation (Collins & Loftus 1975), where activation travels 
from one word to another along multiple weighted edges. This allows for target nodes to be activated by multiple intermediate nodes, 
via indirect connections. Consequently, the relatedness score computed using spreading activation can be very different from the edge 
weight that directly links two nodes (provided there is one). Furthermore, the relatedness score can depend strongly on the specific 
algorithm used to spread activation through the network. We will describe the details of the algorithm we chose in an upcoming 
section.  

The fact that spreading activation can activate a word via multiple indirect connections has important advantages for inferring 
semantic relatedness. For example, De Deyne et al. (2016) showed that spreading activation processes can be used to predict human 
similarity judgments of weakly related word pairs and the time it takes to produce those similarity judgments. Importantly, the authors 
attributed the success of capturing weak relations to the spreading-activation procedure used to compute semantic relatedness. The 
main idea is that weakly related word pairs are linked in semantic memory only via intermediate words, and that the amount of time it 
takes to traverse these links can be approximated by activation spreading via indirect paths. The idea that human relatedness 
judgments are the result of a ‘stepwise’ inference procedure is consistent with the empirical literature on mediated priming effects 
(McNamara & Altarriba, 1988; McNamara, 1992). A second example is Rotaru et al. (2018), who implemented a spreading activation 
process on a graph derived from a similarity matrix built from word co-occurrence data. The authors showed that semantic inferences 
computed on their graphical models (using activation spreading over paths with at least two edges), provided a better fit to empirical 
data compared to their spatial counterparts. The data that was modeled is both accuracy and response time in lexical and semantic 
decision tasks, and semantic relatedness judgements tasks. Although Rotaru et al. (2018) did not explicitly analyze the role of indirect 
connections, they did mention that the computation of semantic relatedness involved both direct and indirect links between words. 
Altogether, these results demonstrate the utility of graphical structures derived from corpus data, and the potential for graphical 
models to provide a better account of human semantic relatedness judgments of indirectly related words compared to spatial models 
constructed from the same data. 

To summarize, contemporary spatial and graphical semantic models are both limited as satisfactory models of semantic 
cognition. To overcome limitations in the representational abilities of spatial models, and the lack of developmental plausibility in the 
construction of graphical models, we propose an integrated approach based on 1) encoding linguistic data in a graphical data structure, 
and 2) a method for constructing the graph based on automatic extraction of word co-occurrence statistics from corpus data. Further, 
to compare our proposed integrated model with other models on our selectional preference task, we developed a procedure, based on 
spreading-activation, for quantifying lexical semantic relatedness in our proposed model. As all four model types are derived from the 
same co-occurrence matrix (Figure 1), and other modeling properties and parameters are carefully controlled, we can tease apart the 
contribution of the different properties of the models (graph vs. space, and co-occurrence versus similarity) to performance in our task.  

We hypothesized that an integrated approach would produce more accurate semantic relatedness judgments. Our reasoning is 
motivated by an important difference between graphical and spatial semantic models. Specifically, we argue that, in contrast to spatial 
models, graphical models can simultaneously encode multiple orders of similarity (for discussion, see Shütze 1998; Artetxe et al., 
2018) in the same topology. More specifically, we argue that the combination of graphical structure with a measure of relatedness 
based on spreading-activation, effectively combines multiple semantic similarity spaces - corresponding to successively higher levels 
of abstraction - in the same model. This combination makes it possible to evaluate different types of relatedness (e.g., direct 
syntagmatic, paradigmatic, indirect syntagmatic) in the same structure without a need to transform the underlying topology. In 
contrast, spatial models typically specialize in only one type of relatedness at a time, and in order to obtain measures of other kinds of 
relatedness, the space would need to be transformed (e.g., from a co-occurrence matrix to a similarity matrix; from a similarity matrix 
to a higher-order similarity matrix). We return to this point in the discussion, where we provide a more detailed explanation of the 
similarities and differences between spatial and graphical models. In the next section, we introduce the methods we used to train and 
test our models. 
A World for Words 

Semantic models built from linguistic corpora have several advantages. They have the practical advantage that obtaining a 
corpus is cheaper and easier than obtaining an equally sized normative dataset, and much easier than hand-labeling semantic relations. 
And perhaps most importantly, corpus-based models have a theoretical advantage, in that their structure and complexity is critical to 
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distribution-based theories of knowledge representation. However, semantic models built from large naturalistic corpora have a 
matching disadvantage: the size of the corpus, and the complexity of the information contained in it, can make it difficult to 
understand precisely what aspects of the input contribute to the success of a model. Popular neural network models such as GPT-3, 
Word2Vec, and BERT, are trained on natural language corpora containing millions or billions of words, represented across millions or 
even billions of parameters. This can make understanding what kind knowledge they have acquired very difficult. 

There are two different strategies for researchers aiming to develop better models of human semantic knowledge. The first 
(and most common) approach is to focus on their fit to empirical data, such as sentence reading times, eye-tracking and EEG data 
obtained during sentence processing, semantic priming data, and normative judgements (of relatedness, similarity, categorization, and 
semantic facts). The second approach, and the one that we pursue in this paper, is to design artificial datasets that are created to 
highlight specific formal scenarios and can be used to test a model’s formal capabilities.  

Using an artificial corpus has many advantages when trying to understand the basic workings of complex distributional 
semantic models, such as large language models. The first and most obvious is that it allows one to precisely control the language, 
such that the only important sources of variability in the language are those that match the theoretical question that is being tested. 
This allows for control of the vocabulary size, the syntactic structure, and the semantic relationships in the language, allowing for 
more controlled tests of the models’ abilities. A second advantage is that limiting the size and complexity of the language allows the 
models to be more interpretable. Instead of needing to understand and interpret billions of parameters, we can deal with models that 
have only dozens or hundreds. This makes understanding what the model can do much easier. There is a growing number of studies 
that have made use of artificial language corpora to understand the representations learned by complex models (Ars & Jones, 2017; 
Elman, 1990, 1991, 1993; Henighan et al., 2023; Mao, Huebner, & Willits, 2022; Perruchet & Vinter, 1998; Ravfogel, Goldberg & 
Linzen, 2019; Ri & Tsuruoka 2022; Rohde & Plaut, 1999; Rubin, et al., 2014; St. Clair, Monaghan, & Ramscar, 2009; Tabullo et al., 
2012; Wang & Eisner, 2016; White & Cotterell, 2021; Willits, 2013). 

 
Method 

An Artificial Corpus to Describe A Simulated World 
To generate the artificial language corpus used for model training, we first created a simulated artificial world, consisting of 

agents with goals, and events that occur as those agents pursue those goals. The events that take place in the simulated world were 
inspired by a highly simplified hunter-gather ecology. As the events in the simulated world unfold, linguistic descriptions were 
generated that narrate the events, transforming event and goal-related contingencies into word sequences. We investigate which of the 
computational models can learn the rules generating the contingencies in the world from the linguistic sequences.  

The semantic structure of the world was governed by several interacting constraints. Agents belonged to different semantic 
categories, and had specific drives they were trying to satisfy (hunger, thirst and sleepiness). Agents then had action plans (consisting 
of sequences of specific events) that they could take to satisfy those drives. The action plans and specific actions that each agent was 
allowed to take were dependent on their semantic category. In addition, the allowable patients of the actions were also constrained by 
their semantic categories (e.g. agents of the type CARNIVORE could eat entities of the type HERBIVORE but not entities of the type 
FRUIT). 

The categories to which the entities in the world belonged instantiated a hierarchical structure, as described in Table 3. The 
highest-level division was between agents, inanimate objects, and locations. Agents could be human or nonhuman animals; nonhuman 
animals can be carnivores or herbivores; and herbivores can be either small, medium, or large. Each category had three members. 

Unlike previous works (Erk et al. 2010) that used selectional preference to evaluate semantic models trained on naturalistic 
corpora, we need to incorporate selectional preferences into our artificial corpus. That is, we need to manipulate which nouns can be 
agents or patients for each verb, and with what frequency or probability. The procedure we followed for generating the events in the 
world, and then for generating the corpus that describes those events, is discussed below. 

 
Agents and Goal-Driven Event Structures 

The semantic categories of an agent imposed several hierarchically structured constraints on their action plans. Agents from 
all categories could perform the action denoted by drink upon encountering entities of the type LIQUID when they were thirsty. For 
this action plan, the event sequence for all agents was the same. The same is true of the action plan denoted by sleep, which involves a 
single action. However, event sequences for an action plan can differ between different entities, and some are unique to a specific 
subset of entities. For example, only agents of the type HUMAN could perform the actions denoted by stab and cook (see Appendix A 
for all constraints). 

The semantic categories of an agent imposed significant constraints on what they could do when they were hungry. When a 
member of the HERBIVORE category was hungry, it had to perform the action denoted by search, and when it found an entity of type 
PLANT, it then had to perform the actions denoted by go_to, and eat. When an entity of type CARNIVORE was hungry, it had to 
perform the action denoted by search, and when it encountered an entity of type HERBIVORE, it had to perform the actions denoted 
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Table 3. Entities and Actions in the Simulated World 
Animate Agents Inanimate Objects and Locations 
AGENT = [HUMAN, NONHUMAN] 
HUMAN = [Mary, Kim] 
NONHUMAN = [CARNIVORE, HERBIVORE] 
CARNIVORE = [wolf, tiger, hyena] 
HERBIVOR = [S_HERBIVORE,  
                         M_HERBIVORE,  
                         L_HERBIVORE] 
S_HERBIVORE = [rabbit, squirrel, fox] 
M_HERBIVORE = [boar, ibex, mouflon] 
L_HERBIVORE = [bison, buffalo, auroch] 

FOOD = [NUT, FRUIT, PLANT, AGENT] 
NUT = [walnut, cashew, almond] 
FRUIT = [apple, pear, peach] 
PLANT = [grass, leaf, flower] 
LIQUID = [water, juice, milk] 
 
LOCATION = [river, tent, fire] 
 

 
Intransitive Action 

 
Transitive Actions 

rest (AGENT) 
search (AGENT) 
lay_down (AGENT) 
sleep (AGENT ) 
wake_up (AGENT) 
yawn (AGENT except S_HERBIVORE) 
stretch(AGENT except S_HERBIVORE or L_HERBIVORE) 
get_up (AGENT) 
 

go_to (AGENT, LOCATION) 
chase (AGENT, AGENT) 

  drink (AGEN , LIQUID) 
eat (AGENT, FOOD) 
reach (HERBIVORE, PLANT) 
catch (CARNIVORE or HUMAN, HERBIVORE) 
peel (HUMAN, FRUIT) 
crack (HUMAN, NUT) 
throw_(spear)_at (HUMAN, L_HERBIVORE) 
shoot (HUMAN, M_HERBIVORE) 
trap (HUMAN, S_HERBIVORE) 
stab (HUMAN, S_HERBIVORE) 
butcher (HUMAN, NONHUMAN) 
gather (HUMAN, FOOD ) 
cook (HUMAN, NONHUMAN) 

 
Note. Upper-case words denote categories of entities, while lower-cased words denote entities or actions in the simulated world. Brackets 
are used to group entities that belong to the same category. Parentheses are used to group entity categories involved in action, as either 
agent (in first position), or patient (in second position). 
 

by chase, catch, and eat. When an entity of type HUMAN was hungry, they had a wider range of possible foods, and the 
event structures they could use. On the one hand, they could choose the “eat_fruit” action plan, which meant they must first perform 
the actions denoted by search, go_to, gather, peel, and finally eat. On the other hand, they could choose the “eat_nuts” action plan, 
which consisted of the same set of actions except that a NUT requires the actions denoted by crack instead of peel. An entity of type 
HUMAN can also eat any member of the HERBIVORE category, but each has different sizes (marked by the prefixes S_, M_, and 
L_) and, consequently, require different actions to be caught and turned into food. For instance, to turn a member of M_HERBIVORE 
into food, an agent has to perform the actions denoted by search, go_to, chase, shoot, catch, butcher, gather, ‘go_to fire’, and then 
cook. To turn members of L_HERBIVORE and S_HERBIVORE into food involves a similar chain of events: To convert an entity of 
type L_HERBIVORE into food, an agent must perform the action denoted by throw_(spear)_at instead of shoot, and to convert an 
entity of type S_HERBVIORE into food, an agent must perform the actions denoted by trap and stab instead of shoot and catch.  

The consequence of this causal event structure was that each category (and indeed the full hierarchical structure of the 
categories) was instantiated in the distributional structure of the events and their agents and patients. Animate and inanimate entities 
were different in a very large number of ways, particularly in the inability of inanimates to serve as agents of any events. The different 
inanimate entities were differentiated by the events for which they could be the patient, and by the agents that participated in those 
events. 

 
Simulating Agents, Actions and Events 

Using the rules that define the simulated world, we ran 10 distinct simulations, each of which differed in the random seed 
used to initialize the world. Each simulation included 610 animate entities in 5 categories: both members of the HUMAN category; 1 
instance each of 2 randomly-selected members of the CARNIVORE category; 101 instances in each of 2 randomly-selected members 
of the L_HERBIVORE category; 101 instances each of 2 randomly-selected members of the M_HERBIVORE category; 101 
instances of each randomly-selected members of the S_HERBIVORE category. Each simulation also included inanimate entities from 



SPATIAL VS. GRAPHICAL  
 

 

 

two randomly selected members of each of the NUT, FRUIT, PLANT, and LIQUID categories. Members of FRUIT, NUT, PLANT, 
LIQUID were resources for consumption and therefore were created as-needed so that those resources did not run out during the 
simulation. 
At the start of each simulation, each entity was placed at a specific coordinate in the simulated world, alongside randomly placed non-
agent objects (members of the FRUIT, NUT, PLANT, LIQUID, and LOCATION categories). The drives of each agent (hunger, thirst, 
and sleepiness) were set to random values from a range specific to the category, and were increased by a category-specific rate at each 
time step. In this case, the event sequences of each agents and the resultant corpus will be subjected to certain level of randomness 
(noises).1  Each simulation was run for 10,000-time steps, and at each step, the action state of each agent was updated. Over the course 
of the simulation, if a drive crossed a critical threshold (0.8), the agent was forced to choose an action plan that would lower that drive. 
Some actions, like ‘drink’, took a fixed amount of time, while others (like ‘search’ and ‘go_to’) varied in duration. The action ‘search’ 
was variable in duration because it depended on the number of failed search trials, and the action ‘go_to’ depended on how far away a 
target was. Once an agent completed an action plan and satisfied its goal, it rested until a new drive reached the critical threshold. On 
average, each agent completed approximately 700 actions in a simulation.  

A further constraint on the world simulation was a distinction between “resource herbivores” and “action herbivores”. For 
instance, if a simulation included 101 instances of ‘rabbit’, 100 of these instances were “resource herbivores” that could participate in 
events initiated by agent entities. Only one ‘rabbit’ would be classified as an “action herbivore” that could take its own actions. This 
distinction was put in place to ensure that there would always be enough food resources for all entities of type HUMAN and 
CARNIVORE, but also to balance the number of actions that are performed by an entity of type HERBIVORE relative to other agent 
entities. 

 
Generating the Corpus From Simulated Actions 

Corpus generation proceeded as follows: At each time step, agent entities took turns performing actions contingent on their 
drive levels and the event structure in which they were situated. If an agent successfully carried out an action, a sentence describing 
the action was generated and added to the corpus using the formulas S1 = Agent + IntransVerb and  S2 = Agent + TransVerb + Patient. 
The formula that was chosen depends on the verb type. Every sentence was followed by an optional utterance boundary marker (a 
minor parameter, see Table 4). We used the 10 simulations to generate 10 different corpora (the first fifty sentences in a sample corpus 
can be found in Appendix B), with differences that resulted from which specific members of each category were selected during 
random initialization of entity locations and drive values. Despite this variation, the general semantic structure of the world was 
extremely consistent across runs. See Appendix C for more details on the consistency of the corpora. 

 
Table 4. Minor Parameters Considered During Model Training

Parameter  Options 

Periods included as words in the 
corpus 
Co-occurrence cross sentence 
boundary 
Co-occurrence window size  
Co-occurrence window weight 
Co-occurrence window direction  
Normalization 

 yes, no 
yes, no 
1, 2, 7 
flat, inverse 
forward, backward, summed 
non, row-log, PPMI 

 
Note. To mitigate the potential of values on these dimensions to influence our comparison between the two major parameter 
dimensions, we trained all models on all possible combinations of the six minor parameters. In total, there are 216 combinations. 

On average, each corpus had 14,330 sentences and 50,204 word tokens. We experimented on different corpus sizes and 
decided that the current size is sufficient to encode the stipulated semantic constraints.2 The vocabulary consisted, on average, of 10 
agent nouns, 17.9 patient nouns, and 22.9 verbs of which 14.9 are transitive. For each run, we calculated the number of possible verb-
noun pairs as: Npossible = Nagent Nverb + Ntv Npatient , where Nagent , Nverb , Ntv , Npatient , are the number of agent nouns, verbs, transitive 
verbs and patient nouns that occurred in a given corpus. This number indicates the number of possible events that could occur if there 
were no semantic constraints. However, due to the presence of constraints, only a portion of these events occurred in our simulations. 
On average, there were 498 possible verb-noun pairs per run, but only 42 percent of those pairs actually occurred in the corpus. It 
should be noted that not all inanimate entities in a simulation are necessarily described in the resulting corpus. For instance, the word 

 
1 We did not systematically manipulate the noises because we were primarily interested in the inferences made by the model on 
relations for which they had reliable input (but not perfect for most models).  
2 The corpora statistics and model performances were relatively consistent when the corpus sizes were larger. How the models would 
perform when given only partial information (with smaller corpus size) would be an interesting topic for future investigations.  
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apple may not be included in a corpus if none of the agents in a simulation performed the action ‘eat’ with the entity ‘apple’. This 
flexibility resulted in different values for Npatient and thus different Npossible across corpora. More details can be found in Appendix D. 
 
Table 5. A Subset of Rules and Hypothetical Frequencies of Events 

  Rules  Hypothetical Frequencies in Corpus 
Noun  crack  chase  eat  drink  crack  chase  eat  drink 
Marya   1  1  1  1  2  3  5  6 

tigera   0  1  1  1  0  2  7  4 

rabbita   0  0  1  1  0  0  3  3 
Maryp   0  1  0  0  0  6  0  0 

tigerp   0  0  0  0  0  0  0  0 
rabbitp   0  1  1  0  0  10  7  0 

 
Note. The table demonstrates the relationship between binary rules governing what entities are allowed to perform which actions in the 
simulated world (left) and co-occurrence frequency in a corpus generated from that world (right). The subscripts a and p denote 
whether a word is the agent or patient of the verb of which it is an argument. 

To illustrate the correspondence between the event semantics of the simulated world and the corpora generated from a single 
simulation, consider Table 5. The table shows a small subset of the binary rules governing which entities can perform which actions, 
and their corresponding co-occurrence frequencies in a randomly chosen corpus. For a complete specification, see Appendix A. Due 
to the tight coupling between the world and the corpus, the distributional statistics in the corpus can be said to be grounded in the 
statistics of the simulated world. Consequently, this enables us to use the generated distributional data not only for training of semantic 
models, but as the criterion for model evaluation. 
 
Agents and Patients 

During corpus generation, we distinguished between nouns that occurred in agent and patient position by annotating nouns 
with their semantic role. To highlight this fact, we use the subscripts a and p to distinguish nouns that occur in agent or patient 
position, respectively. This annotation approach ensures that words that occur in agent position and words that occur in patient 
position are disjoint. To illustrate, the event ‘chase(tiger, rabbit)’ was converted into a sequence of words that preserves the thematic 
role structure of the action, namely ‘tigera chase rabbitp’. This means that rabbita and rabbitp are considered distinct word types in the 
corpus and are thus treated distinctly by each semantic model. There are two motivations for this approach. First, it allowed us to 
disentangle the ability of models to track thematic role assignment from their ability to learn and infer selectional preferences. Second, 
it allowed us to more carefully preserve the semantics of the world in the strings that are produced in the corpus. Co-occurrence does 
not always distinguish between thematic roles in a principled fashion, especially when word-order does not correlate with thematic 
role. For example, a co-occurrence-based representation of rabbit and tiger given the transitive sentence ‘tiger chase rabbit’ and 
‘rabbit chase tiger’ will yield identical results, despite the difference in thematic role. This is problematic because a model based 
purely on co-occurrence may not be able to distinguish the two nouns even though each has different constraints on the kinds of 
actions their corresponding entities can perform in the simulated world (Table 5).  See Appendix A for an example. 
 
Experimental Design  
 
Minor Model Parameters 

While our primary goal is to compare the ability of spatial and graphical semantic models as a function of whether they are 
encoding co-occurrence or similarity data, we also considered the possibility that variation along other modeling parameters may 
influence this comparison in unforeseen ways. The reason is that there are many parameter choices known to affect the ability of 
distributional semantic models to perform well on various tasks, including, corpus pre-processing and the method of computing co-
occurrence (Sahlgren, 2006; Bullinaria & Levy, 2007; Bullinaria & Levy, 2012). To mitigate the potential for such hidden effects, we 
embedded the comparison between spatial and graphical data structure within a much larger parameter space, which we refer to as 
‘minor’ parameters. We considered six minor parameters; they are shown in Table 4. For each of the four model classes, varying along 
the two major parameter dimensions (graph vs. space, co-occurrence vs. similarity), we trained 216 models, to cover all combinations 
of minor parameters.  

In addition to the major and minor parameters, we varied training of similarity models along two additional dimensions, 
shown in Table 6.  First, we varied whether the co-occurrence matrix was reduced via SVD or left in its original form before 
similarities were computed. Second, we varied the metric used to compute vector similarity (distance, cosine, or correlation). As a 
result, there were far fewer co-occurrence models than similarity models. While this extension resulted in no additional conditions for 
co-occurrence models, this extension resulted in 6 additional conditions for each similarity model - beyond data structure (e.g. graph 
vs. space) and the 6 minor parameter dimensions. While not the primary interest of this work, we included these conditions to bolster 
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our ability to make strong conclusions and detect unforeseen interactions. Further details of these additional parameters can be found 
in the supplementary materials. 3For more information about the effects of minor parameters on the performance of spatial models, see 
Sahlgren (2006), Bullinaria & Levy (2007); Bullinaria & Levy (2012), and Rubin et al., (2014). 

 
Table 6. Number of Models in Each of the Major Parameter Conditions  
   Encoding Type 

Data 
Structure 

 
Co-occurrence 

 Unreduced Similarity (no SVD)   Reduced Similarity (SVD) 
  Distance Cosine Correlation   Distance Cosine Correlation 

Spatial  n=216  n=216 n=216 n=216 
 

 n=216 n=216 n=216 
Graphical  n=216  n=216 n=216 n=216   n=216 n=216 n=216 
 
Note. For each data structure, there are 7 encoding types, i.e., the co-occurrence encoding and six similarity encodings based on different 
methods for computing similarity. 

The complete design is thus composed of 6 minor parameter dimensions, 2 major parameter dimensions, and 2 additional 
dimensions that extends the number of conditions per similarity model from 1 to 6. The total number of trained models can be 
calculated as follows: With the extension of the 2x2 major parameter space by the two additional dimensions for similarity models, 
there are 2x7=14 major conditions. This is best illustrated in Table 6. In each major condition, we trained models on all possible 
combinations of minor parameters, namely 2x2x3x2x3x3=216. Multiplying 14 by 216 results in 3024, the number of total models 
trained per corpus. Training was repeated 10 times, once for each of the 10 corpora generated from different randomized runs of the 
simulated world. 

 
Model Evaluation 

To provide an overview of our evaluation methods, we briefly outline our procedure for model training and evaluation. For 
each of the 3024 models per corpus, we derived a semantic relatedness table containing the relatedness score for every word pair in 
the model’s vocabulary. Then we evaluated each model using our selectional preference task in which we correlated a model’s 
semantic relatedness (SR) scores to the target relatedness scores derived directly from the corpus. We report performance as an 
average over all 10 model instances. In the following sections, we explain 1) how semantic relatedness was computed for the spatial 
and graphical models; 2) how the target relatedness, used as the criterion for scoring models, was derived from the corpus; and 3) how 
the model-derived relatedness scores were compared to the target relatedness scores. 
Computing Semantic Relatedness for Spatial Models 

For the co-occurrence space models, semantic relatedness was calculated in the following way. Relatedness between two 
words in the co-occurrence space at indices i and j was calculated as the simple co-occurrence value in the co-occurrence matrix 
(normalized or raw depending on that model’s normalization parameter setting). One complication is that these co-occurrence 
matrices were not always symmetric. For example, for models that track co-occurrences in the forward direction only (from the word 
in row i to the subsequent word in column j), the cell (i, j) encodes how often j followed i, and the cell (j, i) encodes how often i 
followed j. As we are using these co-occurrence values to predict relatedness in ordered sentence contexts, we always used the cell 
that corresponded to the appropriate order given the sentence. For example, when measuring the semantic plausibility of the sentence 
‘Marya trap rabbitp’, we used the cell corresponding to the frequency of rabbitp occurring after Marya. Due to this asymmetry, we 
denote SR(x, y) as the semantic relatedness from word x to word y, in that order, i.e. sensitive to the order of x and y. In this case, 
SR(Marya, rabbitp) denotes the semantic relatedness from Marya to rabbitp, evaluated by the cell (Marya, rabbitp) of the co-occurrence 
matrix. For the similarity space models, relatedness was computed by as the similarity between the row vector for word x with the row 
vector for word y, using the similarity metric for that model (cosine, distance, or correlation), either before or after normalization, and 
either before or after SVD reduction, depending on that model’s parameter settings. 
Computing Semantic Relatedness for Graphical Models 

One simple approach for computing semantic relatedness on graphs is to use the geodesic distance (the length of the shortest 
path connecting two nodes), which has previously been used to predict human judgements of semantic relatedness (Kenett et al., 2017, 
Kumar et al. 2020). If two nodes are connected by a path of length 1, their geodesic distance is 1, otherwise it is greater than 1. While 
the geodesic distance is a relatively straightforward approach to computing the relatedness between words in a network, there are 
reasons to believe it is insufficient for capturing finer-grained aspects of semantic relatedness. For example, the geodesic distance is 
not sensitive to word frequency or the weights on edges between nodes. In Figure 2, both the geodesic distance for the pairs search-
tiger and search-go_to are 1, but search and tiger co-occur twice, while search and go_to only once. Judging by geodesic distance 
alone, the two pairs would be considered equally related. Additionally, behavioral studies have shown that human semantic similarity 
judgments are not symmetric (Tversky, 1977), a problem which even differentially weighted edges would not solve (without having 
bidirectional edges between nodes that have different weights). Finally, geodesic distance produces the so-called “hub effect” in which 

 
3https://github.com/UIUCLearningLanguageLab/Humans/blob/master/Supplementary%20Materials/Minor_parameters.pdf 
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distantly related words may be geodesically close to each other by virtue of co-occurring with the same frequent word. For example, 
all words preceded by the article the, will be no more than two steps away from each other. We evaluated all our graphical models 
with geodesic distance and the performance was in general very poor: The top performing model variation scored 0.589 (average on 
two runs), in contrast to the top model with spreading-activation scoring 0.93 over the same two runs. 

For these theoretical and practical reasons, we will measure semantic relatedness on our graphs using a spreading-activation 
algorithm (Anderson, 1983; Collins & Loftus, 1975). This avoids the issues mentioned above by considering both geodesic distance 
and co-occurrence frequency and allowing activation to spread along multiple direct and indirect pathways. To compute the semantic 
relatedness from word x to word y using activation-spreading, we activated x with strength 1, and measured the amount of activation 
that reached y at the time step at which y is first activated. The activation spreads through the network in the following way: At every 
moment, each node is activated if its activation strength is greater than zero. When a node is activated, it sends out all its activation to 
neighboring nodes, proportional to the weights on the edges connecting two nodes.  

The process is illustrated in detail in Figure 2, in which we compute the semantic relatedness from search to other words in a 
hypothetical network. We denote A(nodei) as the amount of activation of node i. For example, A(tiger)=1 means the activation on the 
node tiger is 1. At time t0, we set A(search)=1 and A(nodei)=0, for any node i other than search. The activation of search will spread 
to its neighbors, tiger and go_to, activating each proportional to the weight of the connecting edge. By the end of t0, A(tiger)=2/3 and 
A(go_to) = 1/3 (Figure 2, left). Since this is the first-time tiger and go_to are activated, the semantic relatedness (SR) of search and  
tiger is 2/3, and SR(search, go_to) = 1/3. At the end of t0, rabbit was not activated because it was not directly connected to search. 
Therefore, in order to compute SR(search, rabbit), we need to consider another time step. At the next time step t1, the two activated 
words spread their activation to their neighbors. Since the connections between go_to and all three neighbors have the same weight, 
activation was spread evenly to its neighbors. Thus search, rabbit and tiger each received 1/9 of the activation of go_to (Figure 2, 
right). Similarly, the A(tiger) spreads, with amount 2/3, to its neighbors, sending 1/3 of its activation back to search, 1/6 to go_to, and 
1/6 to rabbit. As a result, at the end of t1, the node rabbit has received 1/6 activation from tiger, and 1/9 from go_to, summing up to 
A(rabbit) = 5/18. Since this is the first time step at which rabbit is activated, we used this number as the semantic relatedness of the 
pair search-rabbit, i.e., SR(search, rabbit) = 5/18. In this approach, semantic relatedness equals the amount of activation that reaches 
the target through the combined shortest paths to the source. For example, in Figure 2, there are two shortest paths between search and 
rabbit (search-go_to-rabbit; search-tiger-rabbit), and SR(search, rabbit) is computed as the sum of the activation that reaches rabbit 
from both paths. 

There are three factors that contribute to the magnitude of semantic relatedness computed in this way. The first is the length 
of the shortest paths. Activation strength diffuses as at each step when there is more than one node linked to the source node. As most 
nodes are likely to link to multiple nodes, less activation tends to reach the target when it is separated from the source by a longer 
path. The second factor is the number of shortest paths to the target. The larger the number of shortest paths to the target, the more 
activation can spread directly from the source to the target before diffusing elsewhere. The third factor is the weights of edges on the 
shortest paths. As activation diffuses proportionally to the weights, stronger weights on the shortest path will result in larger activation 
at the target. In our graphical models, these weights correspond to word co-occurrence or word similarity. 
Figure 2:  
An Illustration of Activation Spreading and Computation of Semantic Relatedness 

 
Note. In both panels, the node search is activated with strength 1. Our annotation shows the steps involved in the computation of the 
semantic relatedness SR(search, tiger), SR(search, go_to), and SR(search, rabbit). Connection weights are shown in black, and 
activation values are shown in red. Because the example is for illustration, the thematic role subscripts of nouns are omitted. 
 

In sum, the spreading-activation-based relatedness measure is a combination of multiple aspects of semantic networks: It is 
simultaneously sensitive to the geodesic distance, overall network structure, and co-occurrence frequency. Furthermore, the 
relatedness measure is asymmetric. In most cases SR(x, y) will be different from SR(y, x), and therefore has the potential to account 
for the asymmetry found in human judgements (Tversky, 1977; Peterson et al., 2020). Also, this approach partially avoids the hub-
effect by considering the edge weights.  
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Note that the concept of spreading-activation on semantic networks can be traced back to classic works (Anderson, 1983; 
Collins & Loftus, 1975). More recent studies have implemented similar algorithms in their investigation of human semantic memory 
(De Deyne et al., 2016; Rotaru et al., 2018). Our spreading activation algorithm is very similar to the “random walk” algorithm used 
by De Deyne et al. (2016) to calculate the semantic similarity between nodes in graphs constructed from associative norming data. 
Both our algorithm and that of De Deyne et al. (2016) compute the relatedness of nodes that are not directly linked using the power 
series of the adjacency matrix. The difference is that De Deyne et al. (2016) de-emphasized the contribution of excessively long paths 
with a global damping parameter, while we de-emphasized the longer paths as a function of the node pair it connects. This variation is 
due to differences in research goals. De Deyne et al. (2016) used relatedness in their graph to predict lexical semantic similarity. 
However, our focus is on the relatedness between verb-noun pairs whose graphical distances vary. Thus, a global damping parameter 
might have unforeseen effects on our results. Instead of dampening longer paths by a global parameter as in De Deyne et al. (2016), 
we excluded longer paths by only including the contribution of activation via paths no longer than the distance between the source and 
target node. Nevertheless, our method results in a more complex algorithm compared to using the global damping parameter. Future 
work that tries to scale up our approach to bigger vocabulary and corpus sizes would probably be wise to adopt the global damping to 
reduce noise from excessively long paths.  

 
Computing the Target Relatedness 

To evaluate models, we need some way to establish the “right answer” that determines the degree to which observed and 
unobserved word pairs are related. There are, in principle, three ways this could be done. The first considers relatedness as a binary 
judgment, defined as whether two words are allowed to occur according to the rules used to constrain which actions can be performed 
by which entities in the simulated world. Under this definition, Marya and eat would be related (because the entity denoted by Mary 
can perform the action denoted by eat in the simulated world), and rabbita and shoot would not be related (because the entity denoted 
by rabbit cannot perform the action denoted by shoot). This evaluation was not our choice, as we were interested in which models 
could produce graded relatedness judgments that humans demonstrate based not just on whether events can occur, but on how likely 
they are to occur.  

A second option would be to derive the correct answer from co-occurrence frequencies observed in the corpus. While this 
would produce graded differences, such an evaluation would not evaluate a model’s ability to generalize beyond observed data, which 
humans are known to do. In our simulated world, ‘Mary’ can ‘shoot’ a ‘boar’ but cannot ‘shoot’ a ‘rabbit’ or ‘water’. Despite no direct 
evidence, we expect that people have little trouble judging the shooting of rabbits as semantically more plausible than the shooting of 
water. In the real world, rabbits are more like boars than water. This is also true of the simulated world, given that the actions that 
‘rabbit’ and ‘boar’ can perform overlap more than those performed by ‘water’ and ‘boar’. Using simple co-occurrence frequencies as 
the gold standard against which the models are compared would not allow us to test a model’s ability to make these generalizations 
(or, more accurately, would punish them for doing so). 

To decide the “right answer” (i.e., the semantic plausibility of a noun-verb pair), we opted for a third option, namely a 
similarity-based procedure. In this procedure, the target scores were directly derived from the corpus co-occurrence statistics. 
Importantly, however, the implementation differed depending on whether a word pair is directly or indirectly related. In the former 
case, the target relatedness score is based on the co-occurrence frequency of a given word pair; in the latter case, the target relatedness 
score is based on the distributional similarity between a given noun and the nouns that co-occurred most frequently with a given verb. 
The higher the similarity between a noun that did not previously co-occur with a verb and nouns that did, the higher the target 
relatedness score. Our method of quantifying semantic relatedness is a simplified version of prior methods based on similar ideas (Erk 
et al., 2010) 

To illustrate how we computed target relatedness, consider the relatedness between the verb crack and all nouns that have 
occurred in the corpus in agent position. The relatedness score is computed differently depending on whether a noun co-occurred with 
the verb or not. For nouns that co-occurred with crack in agent position, the semantic relatedness is simply the co-occurrence 
frequency.  This is illustrated in Figure 3. Because Marya co-occurred with crack three times, the target relatedness for the pair Marya-
crack is 2 (Figure 3b).  The computation is different for nouns that did not co-occur with a given verb in the corpus. For instance, 
tigera did not co-occur with crack (it is not allowed to be the agent of crack). To quantify the relatedness of the pair tigera-crack, we 
obtained the nouns that did co-occur with crack in the corpus in agent position, and calculated the average of the cosine similarity 
between tigera and each of those nouns. Note that the vectors used for similarity computation are the row vectors in Figure 3a. Given 
the example presented in Figure 3, we computed the cosine similarity between tigera and Marya, which resulted in a value of 0.91 
(Figure 3b). When there are two nouns that co-occurred with a given verb, we repeated the procedure, and averaged the resulting 
cosine similarities. For instance, the relatedness of rabbita-chase is the average of the cosine similarity of tigera-chase and Marya-
chase, which ends up being 0.88. 

In this way, the relatedness of a noun and verb that did not co-occur is always smaller than the relatedness of a noun and verb 
that did co-occur, since the co-occurrence frequency for a pair that co-occurred in the corpus is at least 1, while the cosine similarity is 
upper bounded by 1. In general, relatedness is highest for pairs where the noun frequently co-occurred with the verb, less high for 
pairs where the noun co-occurred with the verb less frequently, and lower still for pairs where the noun did not co-occur with the verb. 
Importantly, among the latter group of pairs, semantic relatedness is graded, such that pairs where nouns are more similar to nouns 
that co-occurred with the verb score higher than pairs where the noun is less similar to nouns that co-occurred with the verb.  
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Figure 3. How Target and Model Relatedness Scores are Obtained 

 
Note. This example uses only representations of agents. Panel (a) shows the co-occurrence frequencies for a subset of nouns and verbs 
in the corpus. Panel (b) shows how this co-occurrence matrix is used to compute the pairwise distributional similarities between nouns 
(rows) using cosine similarity. These are used to fill the cells in the co-occurrence table that have zeros. Panel (c) shows the model-
derived semantic relatedness scores for the illustrated verb-noun pairs. 

 
Comparing Target and Model Relatedness Scores 

Figure 3 illustrates the process of how corpus-derived and model-derived relatedness scores are compared, using hypothetical 
data. We used Spearman correlation to evaluate the semantic relatedness scores produced by the model (Figure 3c): each column in 
Figure 3c is correlated with the corresponding column in Figure 3b. The resulting correlations are averaged to obtain the performance 
of a single model. As an example, consider the column representing the verb crack to agent nouns in Figure 3b and 3c, namely [2, .91, .88] 
and [.2, .05, .01], respectively4. The Spearman correlation of two column vectors is 1. The average across columns, and across all 10 
corpora is the performance reported in our results. By averaging across multiple corpora, high performance is strong evidence that a 
model is successful at learning, representing, and inferring the fine-grained semantic relatedness between nouns and verbs. 

 
Direct and Indirect Word Pairs 

Verbs differed widely in the proportion of nouns that did and did not co-occur with them in the corpus. For instance, the 
verbs eat and drink co-occurred with many nouns in agent position in our artificial corpus. This is illustrated in Figure 3. The nouns 
Mary, tiger and rabbit all co-occurred with eat and drink at least once in agent position. Other verbs are more selective; for instance, 
verbs like chase and catch co-occurred with a smaller set of nouns in agent position. The same is true of pairs where the noun was in 
patient position.  

Given that these two situations require different kinds of inference by the model, we split our model evaluation into two 
experiments. In Experiment 1, we evaluated the performance on verbs that directly co-occurred with every noun. In the Experiment 2, 
we evaluated performance on pairs in which the verbs co-occurred (directly) with some but not all nouns. We call the word pairs in 
these two experiments ‘directly related stimuli’ and ‘indirectly related stimuli’, respectively. As an illustrative example in Figure 3a, 
the left half, i.e. word pairs that include crack and chase are indirect stimuli, as they do not directly co-occur with all agents. On the 
other hand, the right half of Figure 3a, i.e. the word pairs that include eat and drink are direct stimuli. To evaluate a model, we 
compared each verb column in the model relatedness table to the corresponding column in the corpus-derived target relatedness table 
using the Spearman correlation. We averaged Spearman correlation across all direct stimuli and indirect stimuli separately, as the 

 
4 Each verb-column is role specific, i.e., the agent and patient nouns are under separated columns. Correlating the corresponding verb 
columns in the agent tables results in correlation scores of the verb to agent roles. The correlation scores of verbs to patient roles was 
computed separately, in the same way. 
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measures of a model’s performance in Experiment 1 and 2, respectively.  

What the average Spearman correlation tells us is how close a model’s relatedness judgments are to the target relatedness. 
There are many alternative methods we could have chosen, and there is no straightforward single “correct” method, especially 
considering we cannot yet precisely formulate the computational procedure that underlies semantic inference in people. That said, we 
tried multiple alternatives to forming the target relatedness (the verb-noun matrix is normalized with PPMI/row-log, or no 
normalization; and similarity is calculated with either cosine or 2-distance), and the results did not differ qualitatively from those 
presented here. Further, our method closely follows a previous approach by Erk et al. (2010). 

 
Performing Well on the Selectional Preference Task 

To perform well on direct and indirect pairs requires making inferences based on two different sources of information. For 
direct word pairs, a model should score highest on those verb-noun combinations that occur most frequently in the corpus.  For 
example, Marya is the only agent of the verb crack in the corpus, and thus a model should prefer Marya over other nouns for the agent 
role in the event crack. For indirect word pairs, good performance requires the ability to make inferences about unobserved noun-verb 
combinations, such as unobserved agents of crack. Although neither tigera nor rabbita can be the agent of the action crack, they should 
not necessarily be judged as equally implausible agents. One way to make these finer-grained judgements is to leverage indirect 
evidence, such as the similarity between tigera and Marya, and rabbita and Marya. For example, tigera is more similar to Marya 
because the entities they denote perform overlapping subsets of actions in the simulated world. Based on corpus statistics — which 
accurately reflect the statistics of the world — a model should infer that the entity denoted by tigera is more likely to carry out an 
action performed by the entity denoted by Marya compared to the entity denoted by rabbita. Notice that such an inference cannot rely 
on direct observation, but rather requires the integration of multiple observations, which we refer to as indirect evidence. In this 
example, we expect a good model to score the relatedness between crack and unobserved agents of crack based on the similarity 
between agents and observed agents (i.e. Marya). For example, a model should assign a higher score to the pair tigera-crack compared 
to rabbita-crack. Thus, good performance on our selectional preference task requires more than just tracking observed co-occurrences; 
instead, a model must leverage indirect evidence, namely the distributional similarity between arguments of a given verb to infer 
plausible, but unobserved verb-noun pairs.  

 
Summary of the Experimental Procedure 

To summarize, we performed the following steps. First, we generated an artificial corpus. Next, we computed 216 co-
occurrence matrices, one for each model trained in a minor condition (Table 6). For each co-occurrence matrix, we generated six 
similarity matrices, and used these seven matrices as the seven spatial models. To obtain the corresponding graphical models, we used 
the co-occurrence or similarity matrices to create undirected graphs with edges between all nodes whose matrix values were non-zero. 
In cases where a matrix was not symmetric, we calculated the edge weights from the sum of the matrix with its transpose, to ensure 
that the resultant graph is undirected5. For each model, we computed the semantic relatedness score for all verb-noun pairs. This 
resulted in a total of 216 ⨉ 14 = 3024 verb-noun semantic relatedness tables, one for each model. 

Next, the target relatedness scores were derived from the verb-noun co-occurrence table (Figure 3a and 3b). Then, for each 
model, we correlated its semantic relatedness scores for a given column in the model table with the corresponding column in the target 
table (Figure 3b,c) using the Spearman correlation. This resulted in a performance score for each verb in each model (separated by 
thematic role). These correlations were separated to distinguish direct and indirect word-pair stimuli. Finally, we averaged model 
scores across word pairs within each experiment (direct word pairs for Experiment 1, vs. indirect word pairs for Experiment 2). The 
final result was two performance scores for each model (direct and indirect respectively).  

We repeated the above procedure 10 times, one for each corpus, and reported the average score for each model. All code for 
this paper including generation of the world and the models is available at https://github.com/UIUCLearningLanguageLab/Humans. 

 
Hypothesis 

The primary question we asked is which of the four model classes (spatial vs. graphical, crossed with co-occurrence vs. 
similarity) would be most successful at judging the semantic relatedness of previously observed (direct) and unobserved (indirect) 
syntagmatic relations. We hypothesized that graphical models should be more successful at inferring the relatedness of indirect pairs, 
while performing equally well at judging related pairs relative to their spatial counterparts. We discuss our reasoning in detail below.  
  First, our co-occurrence space models should perform extremely well at predicting the semantic relatedness of observed 
pairs, such as Marya-crack, because that is precisely what this class of models represents. More precisely, because the target semantic 
relatedness scores are directly derived from co-occurrence frequency, they are extremely similar to the relatedness scores produced by 
the co-occurrence space model. In contrast, co-occurrence space should be less successful at inferring the relatedness of indirect word 
pairs. The latter is true of any distributional model that has no abstraction or inference mechanism enabling integration across multiple 
observations.   

 
5 This summation will collapse a small portion of the graphical models (72 out of 1512) on the window direction dimension 
(forward/backward…), to be specific, the co-occurrence graphical models with no normalization. 
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Second, we predicted that co-occurrence graph models should be equally good at predicting the semantic relatedness of 
direct word pairs, and, importantly, are likely to be better at predicting the semantic relatedness of indirect word pairs relative to all 
other models. Co-occurrence graphs directly represent syntagmatic relatedness between direct word pairs (Marya-crack) with a direct 
edge between the two nodes. And while indirect word pairs (like tigera and crack) are not directly connected in the graph, they are 
nonetheless linked by two intermediate nodes (tigera-chase-Marya-crack). Combined with a spreading-activation procedure for 
computing semantic relatedness, this means that co-occurrence graphical models should be able to produce a non-zero relatedness 
score that is sensitive to the edge strength between each intermediate word and the surrounding network topology. That said, whether 
a particular co-occurrence graphical model will succeed in inferring the relatedness of indirect pairs is dependent on the particular 
combination of minor parameters (e.g. window size, normalization type). Therefore, we do not expect that all instances of the co-
occurrence graph will achieve high performance. It is likely that most of the co-occurrence graphs with large window sizes or without 
normalization will not result in a topology useful for inference based on activation-spreading. Furthermore, we suspect that a co-
occurrence graphical model with a window size of 1 should be able to capture both the direct and indirect relations better than any 
other model. The reason is that nouns and verbs always occur in adjacent positions in the training corpus (i.e., there are no intervening 
items in the word strings presented to our model). This does not mean this is the optimal window size for all tasks and learners, 
including humans; we return to this point in the discussion.  

In sum, we predicted that there would be (1) a large amount of variation in performance due to the vast modeling space, (2) 
that both the spatial and graphical co-occurrence models perform equally well in predicting the relatedness of direct word pairs, and, 
importantly, (3) that the highest performance overall (Experiment 1 and 2) should be achieved by a restricted set of co-occurrence 
graph models. 

Because our task requires inferences about syntagmatic relatedness, and because similarity models capture word 
substitutability (i.e., paradigmatic relations like rabbita-tigera), similarity models should perform overall less well than models that 
track co-occurrence directly. The reason is slightly different depending on whether the model is a graph or a space. As mentioned 
before, spatial models tend to specialize in one type of similarity, such that encoding one usually is at the cost of others.  While 
similarity spaces might perform well at inferring the relatedness of Marya-tiger, this same ability will likely interfere with the model’s 
success in predicting the relatedness of Marya-crack. On the other hand, while similarity graphical models are in principle able to infer 
different kinds of similarity, they should not be able to recover direct syntagmatic relatedness given that their computational primitive 
is one order of similarity above syntagmatic relatedness. Therefore, we predicted that similarity (both spatial and graphical) models 
will have lower performance compared to co-occurrence models when judging the relatedness of both direct and indirect word pairs. 

It should be emphasized that our primary interest is not merely to identify the model that scores highest on our tasks, but 
rather to use performance scores as a tool for understanding the representational abilities of different types of semantic models. In 
particular, we were interested in which theoretical properties, and combinations thereof, enable a model to perform well. As a result, 
we use performance in two ways: (1) as a filter for identifying those models that warrant follow-up analyses and comparisons, and (2) 
to verify that our hypotheses hold up against a large amount of variation in other model parameters.  

 
Results 

Experiment 1 
In Experiment 1, we examined the ability of models to judge the semantic plausibility of direct pairs (i.e., noun-verb pairs 

that occurred in the training corpus). The results are shown in Figure 4. As described in the Methods, there were two conditions 
varying data structure (spatial vs. graphical, shown in blue and orange in Figure 4), and seven conditions varying encoding type 
(shown as different violin plots in Figure 4). For each of these 14 combinations we ran 2160 models (10 randomly generated versions 
of the corpus for each of 216 different combinations of the minor parameters). The performance of a model averaged across all 10 
corpora is shown as a line in a violin plot.6 The thickness of a violin at a given x coordinate indicates the number of models with a 
performance close to that indicated by the x coordinate. The truncation at the left and right edges of a violin indicates the minimum 
and maximum performance of models from that group, respectively.  

The figure reveals an enormous amount of variation in performance on this task. Most models resulted in a relatively poor 
performance, between -0.5 and +0.5. Models that surpassed +0.5 still varied along a number of parameters, such as data structure and 
encoding type. Notably, many similarity models in that group used distance as a similarity metric. That said, the top-performing 
models were those that encoded co-occurrence, and many of them achieved near perfect performance (see bottom right of Figure 4). 
As predicted, both spatial and graphical models are equally represented in this group of top performing models. The perfect and near-
perfect performance of the co-occurrence models is not surprising. After all, the target semantic relatedness scores of direct word pairs 
are identical to co-occurrence frequency. The co-occurrence models therefore directly represent the information needed to perform 
well on this task, and do not require sophisticated inference. 

 
6 We also conducted a mixed effect model analysis using model’s spearman correlation of its semantic relatedness scores with the 
relatedness rankings as the dependent variables, the model’s Encoding Type (co-occurrence or similarity) and Representational 
Structure (space or graph) as predictor variables and had each run of the model as the random factor. Detailed results and analysis can 
be found in the supplementary materials: 
https://github.com/UIUCLearningLanguageLab/Humans/blob/master/Supplementary%20Materials/2by2.pdf 
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Figure 4. Average Model Performance on Selectional Preference Task for Directly Co-occurring Words 

 
Note. Results are broken down by data structure (graph vs. space) and type of information encoded (the seven violin plots). All 
information encoding types except co-occurrence reflect usage of one of the three similarity metrics, either before or after reducing the 
data matrix using SVD. Black lines represent average performance of 10 runs of each model with specific minor parameter settings. 
 
Table 7. A case study comparing the best co-occurrence and the best similarity model at judging the semantic similarity between 
agent nouns and the verb drink.  
 

Noun target  best similarity co-occurrence 
tigera 293 (1) .7605 (3) .0915 (1) 
wolfa 289 (2) .7597 (4) .0912 (2) 

Kima 81 (3) .7655 (2) .071 (3) 
Marya 74 (4) .7657 (1) .069 (4) 

squirrela 70 (5) .7586 (7) .068 (5) 

boara 64 (6) .7597 (4) .0672 (6) 
rabbita 63 (7) .7575 (9) .0669 (7) 

ibexa 61 (8) .7589 (6) .0664 (8) 
buffaloa 55 (9) .7574 (10) .065 (9) 

bisona 57 (10) .7583 (8) .059 (10) 
 
Note. Model-derived semantic relatedness scores are shown alongside the target relatedness scores derived from the corpus. Values in 
parentheses are rank-transformed relatedness scores. 
 

Finally, we noted that dimensionality reduction via SVD generally reduced model performance (e.g., comparing the violin 
plots labeled ‘distance’ and ‘reduced-distance’). There are several reasons for this: First, the raw co-occurrence count is the target 
semantic relatedness, so any departure (e.g., via dimensionality reduction, etc.) from co-occurrence necessarily results in worse 
performance unless there is a singular value encoding that co-occurrence, and only that singular value is used to calculate similarity. 
But because the training corpus is built from a simulated world in which all actions are diagnostic of the semantic relatedness structure 
among entities, the dimensionality reduction by SVD likely removed more signal than noise. To illustrate why models that encode 
similarity performed worse than those that encode co-occurrence, consider Table 7. In this table, we compared the best performing co-
occurrence and the best performing similarity model on judging which nouns are better agents of the verb drink in one of the 10 
corpora. In that particular corpus, the performance of the top similarity model was 0.733, while the performance of the top co-
occurrence model was 1.0. This means the top similarity model did not reproduce the correct rank-ordering of observed agents of 
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drink according to co-occurrence frequency. The reason is that the top similarity model does not directly use co-occurrence, but, 
rather, must rely on word-word similarity (a transformation of co-occurrence). This transformation, as the results suggest, does not 
perfectly preserve co-occurrence information. It should be noted that the pattern of results presented in Table 7 is not specific to the 
verb drink, but is representative of other verbs. See Appendix E for a list of the performance of the top models on each word pair.  

 
Experiment 2 

In Experiment 1, we showed that many co-occurrence models capture the semantic relatedness of word pairs that are directly 
observable in the training data. Next, we compare the ability of distributional models to infer the semantic plausibility of word pairs 
that are not directly observable in the training data. In Experiment 2, we investigated the problem by evaluating models on indirect 
word pairs. We were particularly interested in the spatial and graphical co-occurrence models that achieved perfect performance in 
Experiment 1. While each was able to represent the co-occurrence pattern of observed word pairs equally well, do they differ in their 
ability to infer the syntagmatic relatedness between nouns and verbs that did not directly co-occur? As stated above, we predicted that 
the proposed co-occurrence graph models would surpass their spatial counterparts. In Experiment 2, models were evaluated on the 
same 10 randomly generated corpora used in Experiment 1. 

 
Figure 5. Average Model Performance in the Selectional Preference Task for Indirectly Related Words in Experiment 2. 

 
Note. Results are broken down by data structure (graph vs. space) and the type of information encoded (distance, cosine, correlation, 
reduced-distance, reduced-cosine, reduced-correlation, and co-occurrence). The prefix ‘reduced’ means that SVD was used to reduce 
the dimensionality of the data matrix prior to computing semantic relatedness scores. Black lines represent performance of individual 
models varying in minor parameter settings. 
 

First, to get a better understanding of the overall performance across all model types, we plotted the distribution of model 
performance using a violin plot. The results are shown in Figure 5. As in Experiment 1, there is enormous variation in performance 
both within and between model types. In general, similarity space models perform relatively well on this task, while similarity graph 
models perform relatively poorly (many achieve an average performance below +0.5). Co-occurrence space and graph models surpass 
+0.5, performing better than a large proportion of other similarity models. Within that group, we found that space models clustered at 
approximately +0.40 and +0.75, and most graph models were more evenly distributed between 0.5 and 0.75. Furthermore, we found 
that there is a small minority of co-occurrence graph models that performed much better than all other models, achieving near perfect 
performance (the small orange hump at bottom right corner of Figure 5).  

There are a number of other interesting patterns of performance in our results, including 1) the much higher degree of 
variability in the performance of graphical models in response to changes in the minor parameters relative to spatial models, 2) the 
extremely low variability and generally good performance for similarity space models without SVD and distance or cosine as the 
similarity metric, and 3) the generally (though not universally) worse performance of models using SVD compared to those that did 
not. But for the remainder of the paper, we will focus our analyses on questions related to our theoretical framework and the 
predictions we derived from it for those models clearly standing out from the rest in terms of combined performance in Experiment 1 
and 2. 
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Top Performers 
To determine whether, as predicted, the co-occurrence graph was in the top-performing models, we obtained the modeling 

parameters of the top 20 performers in Experiment 2. The average performance on indirect word pairs for the top 20 models is shown 
in Figure 6, and the parameters of the top 6 models are shown in Table 8. As predicted, we found that the top 5 models were co-
occurrence graphs with a window size of 1. Because the same models also performed at ceiling in Experiment 1, these observations 
demonstrate that the proposed approach based on combining a graphical structure with co-occurrence data captured in small windows 
is most helpful for learning, representing, and inferring the syntagmatic relatedness of direct and indirect word pairs. These findings 
strengthen the claim that the proposed graphical co-occurrence model excels at (i) encoding multiple types of similarities 
simultaneously (e.g. syntagmatic and paradigmatic relatedness), and (ii) is able to infer the semantic relatedness of words that never 
co-occurred, by leveraging syntagmatic and paradigmatic relatedness in the same topology. 

 
Figure 6. Average Performance on the Selectional Preference Task in Experiment 2 for the 20 Best Performing Models 

 
Note. The top 20 models include both co-occurrence spaces (red), and co-occurrence graphs (blue). Importantly, the top-3 models are 
co-occurrence graphs with a window size of 1. Error bars are shown but are extremely small and difficult to see.  

Lastly, these analyses revealed that, despite variation in training data (10 different runs of the simulated world, each 
producing a distinct corpus), and variation in minor parameters, the top performers are extremely consistent in terms of model type 
and performance. Not only are the standard deviations of the Spearman rank correlation miniscule for each of the best performing 
models, but they also differ little in their parameter setting and overall performance. 

 
Table 8. Average performance and parameter values for the top six models. 
Ran

k 
 Mean 

performance 
 Perio

d 
 Sentence 

boundar
y 

 Windo
w 

size  

 Window  
weight 

 Window  
type 

 Normalizati
on 

 Encodin
g type 

 Data 
structur

e 
1  0.901  no  yes  1  flat/linear  summed  log  co-occur  graph 

2  0.896  yes  no  1  flat/linear  backwar
d 

 log  co-occur  graph 

3  0.866  yes  no  1  flat/linear  backwar
d 

 ppmi  co-occur  graph 

4  0.853  yes  yes  1  flat/linear  summed  log  co-occur  graph 
5  0.851  yes  no  1  flat/linear  summed  log/non  co-occur  space 

6  0.758  yes/no  yes  1/2/7  flat/linear  summed  log/non  co-occur  space 
 
Note. The presence of more than one value in the same cell indicates that multiple models share the same score. In those rare cases, a 
change to a modeling parameter did not alter performance.   
 
Targeted Follow-up model comparisons 

What enabled the top models to perform well on the selectional preference task for indirect items? To answer this question, 
we compared the top co-occurrence graph model to the top co-occurrence space model. There are two reasons why such a comparison 
is useful. First, these two models are the best graph and space models overall. For the best performers within each level of similarity 
(correlation, distance, cosine, reduced and unreduced), see Appendix F. Second, these two models achieved perfect performance in 
Experiment 1.  

To compare them, we analyzed their ability to infer the plausibility of agents for the verb trap. In terms of overall 
performance classifying plausible agents of trap, the top graphical model achieved a Spearman rank correlation of 0.903 between its 
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predicted semantic relatedness scores and the target semantic relatedness scores. In contrast, the top spatial model scored 0.701. This 
example is representative of differences in the performance of verbs other than trap. 
 
Table 9. A Case Study Comparing the Performance of the Best Graphical and Best Spatial Co-occurrence Model 

Noun target  graphical spatial 
Kima 62 (1) .255 (1) .255 (1) 
Marya 53 (2) .245 (2) .245 (2) 

wolfa .83 (3) .0553 (3) 0 (3) 

tigera .82 (4) .0551 (4) 0 (3) 
ibexa .769 (5) .0300 (6) 0 (3) 

boara .768 (6) .0304 (5) 0 (3) 
bisona .765 (7) .0233 (10) 0 (3) 

buffaloa .764 (8) .026 (7) 0 (3) 
rabbita .757 (9) .0238 (9) 0 (3) 

squirrela .756 (10) .0244 (8) 0 (3) 
 
Note. The comparison is on the rank-ordering agents in terms of their plausibility of being an agent of the verb ‘trap’. Model-derived 
semantic relatedness scores are shown alongside the target relatedness scores derived from the corpus. Values in parentheses are rank-
transformed relatedness scores. 

Looking specifically at which nouns were judged to be plausible agents (shown in Table 9), both models predicted that the 
best agents of the verb trap were nouns in the category HUMAN, which co-occur with the verb in agent position in the corpus. 
However, the graphical model correctly judged nouns in the categories CARNIVORE, M_HERBIVORE, S_HERBIVORE, and 
L_HERBIVORE to be decreasingly less plausible as an agent for trap. The spatial model, in contrast, did not differentiate between 
agent nouns in these categories. Instead, the spatial model assigned all agents that are not in the category HUMAN a relatedness of 
zero.  

This maladaptive behavior of the co-occurrence space model can be explained in terms of how it derives semantic relatedness 
scores from co-occurrence data: If relatedness is derived directly from co-occurrence frequency, and co-occurrence frequency is zero, 
then the resulting semantic relatedness must also be zero. This cannot be remedied by tuning minor parameters, such as pre-processing 
or normalization. The presence of these zeros makes it impossible for co-occurrence space models to directly make fine-grained 
distinctions between unobserved word pairs (e.g., is bison or wolf a better agent of trap?). 

 
Figure 7. A Graphical Model Inferring the Plausibility of Unobserved Agents  

 
Note. The graphical model can infer that wolfa is a likely agent of trap despite having never observed wolfa as the agent of trap in the 
corpus it was trained on. (a) The nodes wolfa and Marya are connected indirectly via three multi-edge paths that traverse nodes 
corresponding to the words chase, catch, and search. (b) The multi-edge paths are collapsed to reveal the indirect syntagmatic 
relationship between wolfa, rabbita and trap.  
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The reason for the relative success of the graphical model is that, given enough time steps, the spreading-activation algorithm 
produces graded relatedness scores no matter how distantly connected two nodes are. Although the node that corresponds to trap is 
not directly connected to nodes representing entities that are not of type HUMAN (i.e potential agents of trap), the spreading 
activation procedure links trap and potential agents via one or more indirect connections. For example, trap and wolfa are connected 
indirectly via the nodes catch and chase, (Figure 7a). By leveraging these indirect connections, the spreading activation procedure 
activates wolfa after three time steps, and the result is a non-zero semantic relatedness between trap and wolfa (Figure 7b). This can be 
verified by inspecting the middle column of Table 9. The graphical model correctly ranks members of CARNIVORE above 
HERBIVORE as agents of trap. The reason is that members of HUMAN are the most frequent (and only observed) agents of trap, and 
the graphical model considers entities of type CARNIVORE to be more semantically similar to entities of type HUMAN than 
HERBIVORE and HUMAN. This can be further explained in terms of the event semantics of the simulated world: Members of 
CARNIVORE (e.g. wolfa ) perform many of the same actions performed by members of HUMAN, and more so than HERBIVORE. 

Correspondingly, members of CARNIVORE co-occur with more verbs (e.g., catch and chase) in the corpus that are shared 
by members of HUMAN relative to HERBIVOR. In turn, the nodes corresponding to members of CARNIVORE have a larger number 
of shorter — and therefore  stronger — paths to nodes referring to members of HUMAN in the network. The same line of reasoning 
can be used to explain why the graphical model treats members of L_HERBIVORE and S_HERBIVORE as the least plausible agent 
of trap; the paths between nodes corresponding to members of L_HERBIVORE and S_HERBIVORE and nodes corresponding to 
members of HUMAN are fewer in number and weaker in strength.  

To summarize, we have shown that graphical models tend to differentiate the plausibility of unobserved arguments of verbs, 
while (co-occurrence) spatial models do not. To produce graded semantic preferences, graphical models can compensate for the lack 
of information about unobserved co-occurrences by leveraging indirect connections via spreading activation to distantly connected 
nodes. 

 
Discussion 

 
The primary aim of this study was to compare the ability of different distributional semantic models to infer the semantic 

plausibility of observed and unobserved verb-noun pairs. Models were first trained on artificial corpora grounded in a simulated world 
with hierarchical event structures and realistic agent-environment contingencies, and then tested on a selectional preference task in 
two experiments. To succeed in both experiments, a model needed to encode and use fine-grained distinctions in semantic plausibility 
based on observed co-occurrence (i.e. direct word pairs in Experiment 1) and shared co-occurrence (i.e. indirect word pairs in 
Experiment 2). During evaluation, we derived semantic relatedness scores for specific verb-noun pairs from each model, and 
compared them against relatedness scores derived from the corpus a model was trained on. We focused our comparison on models that 
use distances in a vector space as a measure of relatedness, and models that use spreading activation in a graph built from the same co-
occurrence data. We were also interested in the relative performance of these models as a function of whether semantic relatedness 
was defined in terms of word co-occurrence or word similarity. We sampled models systematically from a large space of minor 
parameters to better understand the contribution of individual modeling choices on downstream model performance.  

Our findings can be briefly summarized as follows. First, while both graphical and spatial models performed, on average, 
equally well in both experiments, we found that the best graphical models performed better than the best spatial models on indirect 
word pairs (Experiment 2, Table 8). Second, we observed that models that used co-occurrence frequency to define its dimensions (for 
spatial models) or edges (for graphical models) generally produced higher and more consistent scores than those that used similarity 
scores derived from that co-occurrence data.  

To better understand our results, we conducted targeted follow-up comparisons of the best performing models. We found that 
the semantic plausibility judgements produced by the best spatial model were on par with those produced by graphical models in 
Experiment 1 (for directly related pairs) but not in Experiment 2 (for pairs that did not directly co-occur in sentences in the corpus). 
Further, we found that encoding co-occurrence rather than similarity was advantageous for generalizing to indirect word pairs. The 
reason that the performance of spatial models lagged behind was that they assigned a semantic relatedness score of zero to word pairs 
that did not occur in the corpus they were trained on. In contrast, the best graphical model was able to compensate for the lack of 
observed co-occurrence by deriving the plausibility of an unobserved verb-noun pair via activation spreading along multiple indirect 
paths that link the nodes corresponding to the noun and verb in the network. The spreading activation procedure for obtaining 
semantic relatedness scores proved crucial, as it enabled graphical models to assign non-zero, graded semantic relatedness scores to 
unobserved word pairs. This means that indirect paths connecting two non-adjacent nodes appear to enable strong inferences about 
their semantic relatedness.   

In what follows, we contextualize our findings within a principled framework for understanding the formal similarities and 
differences between spatial and graphical models. To preview, we suggest that semantic inference in the proposed graphical model, 
the co-occurrence graph, approximates a traversal of a series of increasingly higher-order similarity spaces. Our account is an attempt 
to pinpoint the fundamental difference between a graphical and a canonical spatial representation of distributional linguistic data, and 
to explain the success of the co-occurrence graph relative to its alternatives. We argue that its success critically depends on three 
components: 1) the graphical data structure, 2) the spreading-activation measure for computing semantic relatedness on the graph, and 



SPATIAL VS. GRAPHICAL  
 

 

 

3) the encoding of adjacent co-occurrence. We argue that it was the combination of these three factors that enabled the co-occurrence 
graphical model to succeed in our experiments.  

 
Many Higher-Order Embedding Spaces 

In order to appreciate how graphical and spatial models differ as representational substrates for semantic relatedness 
computations, some definitions are in order. Given a row-normalized word-by-word co-occurrence matrix C, each row corresponds to 
a vector representation of a target word defined as a set of co-occurrence probabilities. These word vectors reside in a multi-
dimensional space, where each dimension is the (normalized) co-occurrence with a word that has appeared in the target word’s 
context. As discussed previously, the pairwise comparison of all word vectors can be used to construct a word-to-word similarity 
matrix (see Figure 3). More formally, the similarity matrix is approximately the product of the co-occurrence matrix C and its 
transpose CT. This is the process used to generate the similarity space models in this study. Following Schütze (1998), we refer to the 
vector space spanned by the co-occurrence vectors as an ‘order 0’ space, and  the vector space spanned by the row vectors of the 
similarity matrix CCT as an ‘order 1’ space. Vector entries in the latter space are the similarities between the vectors in the order 0 
space. In this work, the co-occurrence and similarity space models are different variants of these two vector spaces. 

Note that these two vector spaces are qualitatively different. Whereas entries in order 0 spaces correspond to (normalized) co-
occurrence frequencies, entries in order 1 spaces correspond to the similarity between two vectors in the order 0 space. That is, in a 
similarity space (i.e. an order 1 space), two words are similar in terms of their pattern of co-occurrence with words in their context. 
While an order 0 space may capture direct syntagmatic relationships like Marya-trap, an order 1 space captures the paradigmatic 
relationship between Marya and tigera, which share many verbs. However, as shown in the results, both types of spatial models 
struggle when making inferences about syntagmatically related word pairs such as tigera-trap that do not directly occur in the training 
corpus. While the verb trap does not directly co-occur with tigera, it does co-occur with Marya, a word that is distributionally similar 
to tigera. This relationship cannot be captured by relatedness computed in either an order 0 or order 1 space alone. Instead, as 
mentioned previously, a stepwise procedure to compute this indirect relatedness is needed, one that considers both the paradigmatic 
relationship between tigera and Marya, and the syntagmatic relationship between Marya and trap. One way to do this is to input vector 
representations from both the order 0 and order 1 spaces to the computation of relatedness. First, we can leverage the fact that the  
order 1 vector that corresponds to tigera encodes the similarities between it and other words in that same space, e.g., in order to link 
tigera and Marya. Second, we can quantify the strength of the relationship between Marya and trap by inspecting the order 0 vector 
representation of Marya. If the relationship in both steps is found to be strong, this indicates that Marya and trap are indirectly related. 

More formally, if we have not observed word X co-occurring with word A, but we have observed Y and  Z co-occurring with 
A, then we can infer that X should co-occur with A to the extent that it is similar to Y and Z. The relatedness of X and A can be 
estimated as the dot product of the order 1 vector that represents X (the row vector for X in the similarity matrix) and the order 0 vector 
that represents A (the row vector for A in the co-occurrence matrix). This brings us to the concept of a ‘higher order’ vector space. 
This process of creating a higher-order space from a lower order space can be continued to produce increasingly higher order spaces. 
Returning to the example of inferring the relatedness between X and A, we can take the order 0 vector that represents A in the co-
occurrence matrix C and compute its dot product with the vector that represents X in the similarity matrix CCT. The result can be 
considered a measure of the indirect relatedness between X and A.  

Generalizing from vectors to vector spaces, if we take the dot product of all rows in the order 0 matrix C and the order 1 
matrix CCT, the result is the higher order similarity matrix C(CCT)T, or simply C2CT. In plain English, this operation involves 
transposing the order 1 matrix and then left multiplying it by the order 0 matrix C. In the resulting matrix, the entry at (i, j) 
corresponds to the dot product between the order 1 vector for word i and the order 0 vector for word j. Importantly, this process can be 
repeated to generate increasingly higher order vector spaces. It involves taking an existing matrix of some arbitrary order, and 
multiplying it by the order 0 space from which it was derived. Starting with a matrix of order 1, namely, CCT, the process of deriving 
higher order spaces can be denoted by the sequence CCT, C2CT, C2(CT)2, C3(CT)2,  …, in which the two exponents are incremented in 
alternating fashion. Replacing the first and second exponent with the variables m and n, respectively, we can denote a space of any 
order using the form Cm(CT)n. An entry at  (i,j) in this generalized vector space can be considered the semantic relatedness between 
word i and j at some abstraction level determined by m and n. 

 
Spreading-Activation as Traversal of Increasingly Abstract Embedding Spaces 

We are left with the question of how to interpret the entries in a generalized higher order vector space of the form Cm(CT)n. 
To interpret these higher order embedding spaces, the formalism of spreading activation in networks can be helpful. Indeed, we can 
show that there is a formal equivalence between the stepwise derivation of higher order spaces, and the process of spreading-activation 
unfolding across time steps in a graph. As an analogy to the random walk (De Deyne et al., 2016), the matrix Cm describes the 
activation state of the graph after m steps of activation-spreading, and the entry (i, j) of Cm is the activation arriving at node j from 
node i via all paths of length m. Correspondingly, the entry (i, j) in the generalized embedding matrix Cm(CT)n is the amount of 
activation that ‘intersects’ at some intermediate locations in the graph after spreading from node i for m time steps and from node j for 
n time steps. It is analogous to the probability of two random walks initiated from i and j ‘meeting’ (intersecting) with each other on 
the nodes, which is exactly the entry (i, j) in the matrix Cm(CT)n. This amount of intersecting activation (random walk meeting 
probability) is equivalent to the similarities between the higher-order vector spaces discussed above. While this computation has been 
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discussed in previous work (De Deyne et al., 2016) from a methodological perspective, here, we explicitly note that this computation 
describes an equivalence between representing relatedness in a graph and in higher order vector spaces. A more detailed formulation 
of this equivalence is currently underway. 

In light of this formal equivalence, we argue that there is a close correspondence between computing relatedness via 
spreading-activation in a graph and computing relatedness/similarity in vector spaces. In particular, we suggest that spreading-
activation in the proposed co-occurrence graph can be considered as a stepwise traversal across vector spaces of different levels of 
abstraction (i.e. order 0, order 1, etc.)  in a single topology. The benefit of the proposed model is that the same topology can be used 
for computing multiple orders of semantic relatedness without needing to determine when to switch to a space at a different level of 
abstraction. In sum, the spreading-activation procedure for computing semantic relatedness in a graph can be considered a traversal 
over successively higher-order vector spaces. 

It should be noted that in this work, we measured activation originating at a single source node and arriving at a single target 
node only. That is, we set n= 0 in all our experiments. In this special case, relatedness is measured as the amount of activation 
intersecting at the target node, instead of at intermediate nodes distant to the target node. This method proved sufficient for the 
proposed model to perform well in our experiments. This makes sense considering that the two nodes that represent an indirect word 
pair tested in Experiment 2 were no typically no more than 2 edges (i.e. time steps) away from each other in the co-occurrence graph. 
The traversal of activation across the first edge corresponds to the computation of an order 1 vector representation of the source word, 
and the traversal of the second edge corresponds to the computation of the similarity between the order 1 vector representation of the 
source word and the order 0 representation of the target word.  

The equivalence between the co-occurrence graph with a series of increasingly higher order vector spaces has implications 
for our observed differences in the behaviors of the examined models. As mentioned earlier, spatial models of the form C and CCT 
only encode co-occurrence or similarity but not both. Further, the lexical relatedness derived from these models are restricted to orders 
0 and 1, which do not encode information about the indirect syntagmatic relationship between tigera and trap. However, a graphical 
model equipped with spreading activation can flexibly access lexical relatedness at multiple different levels of abstraction. For 
instance, the relatedness of the pair Mary-trap can be quantified by the activation that reaches trap directly from Mary, and the 
relatedness of the indirect pair tigera-trap can be inferred by the amount of activation that reaches trap after multiple time steps. Each 
time step of spreading-activation, therefore, corresponds to a traversal to a higher order vector space. In contrast to spatial models, the 
computation of these different kinds of similarities in the graph do not require moving back and forth between different kinds of 
representational structures, as is the case for spatial models. The ability to flexibly move between levels of abstraction should be 
especially useful when tasked with inferring the relatedness of words that are related as a result of multiple different kinds of 
distributional semantic patterns. For instance, we showed that a higher-order space is needed to capture the indirect relationship 
between tigera and trap in our corpus, and that the co-occurrence graph was able to infer the relatedness of such word pairs. Our 
theoretical analysis suggests that the model was able to do so based on its ability to consult multiple orders of similarity as part of the 
same inference procedure (i.e. spreading-activation). 

By turning our attention to the study of the relatedness between distant nodes in a graph, we are effectively studying the 
contribution of higher-order similarity on semantic inference. This is an important step, given that, historically, the use of strongly 
related words has dominated the study of the organization of semantic memory. An unintended consequence of this focus on lower-
order relations has likely contributed to the success and proliferation of vector space models in accounting for psycholinguistic data. 
However, our work demonstrates that a graphical approach can be equally successful, and, further, may have advantages of inference 
on pairs of words or concepts that are less directly related.  Our formal analysis is in concordance with previous empirical work which 
has demonstrated the psychological reality of longer paths in terms of their ability to account for additional variance in human 
semantic judgments beyond relatedness computed on shorter paths (De Deyne et al., 2016, Rotaru et al., 2018).  
Co-Occurrence and Window Size 
 As we noted, we found that the best performing models not only represent lexical co-occurrence graphically, but do so using 
a particular encoding type, namely adjacent co-occurrences. The effect of co-occurrence encoding manifests in two ways: First, co-
occurrence graphical models performed better on average relative to otherwise identical graphical models based on similarity. Second, 
the best performing co-occurrence graphical models were constructed by connecting nodes based only on adjacent co-occurrence (i.e. 
window size of 1). The advantage of encoding co-occurrence over similarity can be explained with respect to our formal analysis 
above: Because the similarity graphs encode similarities in CCT directly, the order 0 co-occurrences in C (Marya-trap) are 
inaccessible, and more indirect relatedness in C2CT (tigera-trap) cannot be derived without access to the order 0 space. In contrast, 
using adjacent co-occurrence (order 0 similarity) as the primitive, enables the derivation of all higher order similarities. While it is 
straightforward to derive higher order spaces from a space of order 0, it is nearly impossible to derive lower order spaces from higher 
order spaces. 

With the above framework in mind, it should be clearer why encoding adjacent co-occurrence was so important to the 
success of the best-performing models. First, note that the word pairs we used for evaluation are either agent-verb or verb-patient 
pairs. Importantly, agents and patients always occur next to the verbs with which they participate, meaning predicate-argument 
relations do not span long distances in our training corpus. Thus, a size-1 window is the optimal scope for capturing co-occurrence 
statistics relevant to the selectional preference tasks used in this study. Nevertheless, the choice of encoding type is a function of the 
semantic task and the data, and the effect of encoding type on task performance is complex (Bullinaria & Levy, 2007, 2012; Sahlgren, 
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2006). While we found that encoding co-occurrence in a size-1 window resulted in best performance on our task, the choice of 
parameters that influence how information is encoded should be empirically decided in other cases. That said, our argument from 
theory suggests that encoding co-occurrence is advantageous for graphical models, as activation-spreading procedure enables the 
derivation of higher-order relatedness from the data about order 0 relationships.  

 
Spreading Activation as a Theory of Semantic Processing 

Spreading activation need not only be considered a technical innovation for working with graphical data. Rather, our work 
shows that it is worth considering spreading activation as a cognitive account of the processes that underlie human performance in 
language tasks. Moreover, we think that processes like spreading-activation hold promise as a theory of how meaning can be 
computed, and not just how people search for and activate information in semantic memory. To illustrate, consider that neighboring 
nodes in a graph can be separated into a structural neighborhood defined by the network topology and a functional neighborhood 
defined by the spreading activation procedure. For example, functionally related words are those that spread activation more 
efficiently between each other but that are not necessarily close to each other in terms of geodesic distance. In this view, a word’s 
meaning may be defined in terms of its functional neighborhood. Such an account proposes that the processing of a word’s meaning is 
in part supported by the pattern of activation spreading from a given word to those words that are components of its functional 
neighborhood.  

The idea of deriving meaning representations in terms of vectors from semantic networks has been previously investigated in 
the computational linguistics literature (e.g. Chakaveh et al., 2018; Grover & Leskovec, 2016; Orhan & Tulu, 2021; Perozzi et al., 
2014; Pilehvar & Navigli, 2015; for review, see Grohe, 2020). For instance, Perozzi et al. (2014) obtained vectors for each node in a 
graph by applying the random walk method. Their system focuses on the computation of knowledge-based semantic similarity 
between concepts, words, and entities for structured knowledge graphs such as WordNet. These works suggest that semantic networks 
can be, in principle, used to perform the same kinds of semantic tasks where spatial models have been traditionally used. More 
broadly, with the fine-graded measures such as the spreading-activation approach proposed in this work, the derivation of vectors for 
representing word meanings from semantic networks (built from knowledge graphs or from natural language corpora) could rival 
vectors produced from spatial models in the future, and with the added benefit of transparency.  

While much work is necessary to support this proposal, we think that the combination of graphical models and spreading 
activation-based procedures represent a promising framework for the development of mechanistic theories of human semantic 
memory and language comprehension.  

 
Limitations and Future Directions 
 
Parameter Space 

While we think that our systematic approach to model comparison was essential in our ability to draw strong conclusions 
about the advantage of the co-occurrence graph, we did not conduct exhaustive follow-up comparisons of the contribution of minor 
parameters on model performance. We are aware that there are many parameter dimensions we did not consider in our analysis. 
Further, while extensive, our characterization of the parameter space of semantic modeling is surely incomplete, and does not 
straightforwardly lend itself to novel, or integrated proposals. Many semantic models simply cannot be formulated as variations inside 
the parametric modeling space we described without sacrificing clarity. For instance, it is not clear how artificial neural networks, like 
Word2Vec, should be categorized as encoding either co-occurrence or similarity relationships.  

 
World Simulation and Corpus 
 We simulated a world to generate the artificial corpus, and it should be noted that the ecological endeavor may bring in a 
series of factors leading to potential variations in the results. For example, there are various designs in generating events, e.g. the 
initial drive levels and positions of the agents, the randomness in the decisions of the agent in the ‘hunting’ events. In addition, the 
corpus size might also affect the distribution of the sentence tokens incorporating the relevant semantic constraints. These variables, if 
systematically manipulated, may give rise to variance in corpus structure, and in turn affect the performances of the models. While 
beyond the scope of this paper, how the models would perform upon above-mentioned manipulations and what inference can be 
drawn from the result require future scrutiny.  
 
Thematic Roles 

The artificial corpus used to train our models differentiates words based on their thematic role. Because human learners are 
not provided direct access to this kind of information, the next generation of co-occurrence graphical models should be extended with 
mechanisms for dealing with the potential ambiguity that results when thematic role labels are not provided. There are several ways to 
do so; for instance, parsing the raw language data prior to graph construction, and/or leveraging lexical statistics to infer thematic roles 
in a probabilistic fashion (Alishahi & Stevenson, 2008; Allen, 1997; Chang, 2004). 
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From Words to Phrases: Integrating Context and Syntax 
There are many ways in which our artificial corpus differs from that of natural language. For instance, in contrast to the 

simplified input used to train our models, real-world lexical dependencies are often modulated by context information (Ferretti, 
McRae & Hatherell, 2001; Elman, 2009; Hare, McRae & Elman, 2003; McRae, Hare, Elman & Ferretti, 2005). As an example, the 
verb carve is compatible with many nouns, such as knife, and chisel, in instrument position, but only local linguistic (and extra-
linguistic) context can determine which instrument is more plausible in each situation. To illustrate, the sentence ‘Mary carves the 
turkey with a knife’ is more semantically plausible than ‘Mary carves the turkey with a chisel’. In addition, natural language is rife 
with lexical dependencies that span longer distances, such as the verb and adverb in ‘Mary drinks orange juice slowly’. Although 
common in natural language, neither contextual information nor long-distance dependency played a major role in the distributional 
semantic structure of our training corpora.  

In addition to scaling the training data to more realistic language input, much more work is needed to scale the co-occurrence 
graph model proposed in this paper to capture more complex linguistic phenomena, such as the modulatory effect of linguistic context 
and long-distance dependencies. The fact that it does not do so is a symptom of a more general problem, namely that a chain built by 
connecting words that occur one after another in the language input cannot capture the hierarchical syntactic and semantic 
dependencies that exist in natural language. To handle such cases, sentences input to the co-occurrence graph need to be translated 
into more structured forms, such as dependency or constituent trees. An example of this procedure is shown in Figure 8. Graphical 
models which are built from parse trees, instead of raw co-occurrence data, organize the input in a more structured topology, and 
therefore should be able to capture more complex and distant dependencies. To make this possible, future work will need to generalize 
the spreading activation measure to operate on tree structures, so that not only lexical relatedness, but also relatedness between phrases 
can be  computed. 

 
Figure 8 Semantic Networks Constructed Using Different Types of Structures. 

 
Note. Different sentential representations lead to distinctive structures of semantic networks: (a), dependency trees (b), or constituent 
trees (c) for input consisting of the sequences ‘dog chase cat’ and ‘cat chase little mouse’.  Whereas networks built using dependency 
trees and co-occurrence data are purely lexical, networks built using constituent trees encode words as well as phrases and sentences. 
 
Modeling Work for Scaling Up 
There are at least two ways in which the proposed work needs to be scaled to enable closer contact with the psychological literature. 
First, the model must be extended so that it can operate on more naturalistic input, beyond the simple nounagent-verb and verb-
nounpatient constructions that characterize our artificial corpus. For instance, natural language has function words, such as determiners, 
conjunctions, and adpositions. Considering that many function words are extremely frequent in natural language, their inclusion could 
have unforeseen (potentially maladaptive) effects on the network topology, and, in turn, alter the situations in which spreading-
activation can succeed. We are currently pursuing these and related questions concerning the robustness of the proposed graphical 
model against more realistic input. Second, the implementation of the inference procedure used to compute semantic relatedness on 
graphs will likely need to be made more performant to operate on much larger networks more efficiently, especially if our goal is to 
measure activation reaching nodes that are separated by many orders (i.e., path length). Compared to spatial models, where semantic 
relatedness is no more than a single vector similarity computation away, activation-spreading is a multi-step procedure with 
computational complexity that scales with the number of edges traversed. This is an important consideration, given that efficiency is, 
in practice, an important factor for researchers working with large naturalistic data. We encourage future work on more efficient 
implementations, both at the software and hardware level. We will continue to make our own investments in this effort, while also 
focusing on the theoretical issues needed to pave the way toward this goal.   
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Validating on Behavioral Data 
This work is part of a larger and ongoing research effort that aims to bridge the gap between theoretical works in 

computational semantics and psycholinguistics. As a first step towards that goal, a systematic and carefully controlled comparison of 
model abilities is needed. This step is crucial and should take place prior to psycholinguistic experimentation so that (i) promising 
models can be identified, (ii) informed predictions can be generated, and (iii) the potential for unforeseen methodological issues can 
be reduced.  

In ongoing and future work, we will extend the co-occurrence graph so that it can be trained directly on natural language 
input, and in the longer run, we might also integrate non-linguistic input. The current step is needed prior to comparison with human 
task performance, given that people’s experience with language is vastly greater than that which is captured in our artificial corpora. 
Alternatively, we can compare relatedness judgments produced by the model and people after exposure to the same artificial input. 
This option, while possible in the near-term, is labor-intensive, and may not provide a complete picture of human abilities. Regardless 
of which alternative is chosen, we predict that human relatedness judgments for novel word pairs can be closely approximated by a 
graphical co-occurrence model as long as both have been provided comparable language input.  

 
Conclusion 

Using a grounded artificial corpus, and a formal model comparison framework, we systematically explored the ability of a 
large number of distributional semantic models to capture fine-grained and quantitative aspects of noun-verb relatedness in a novel 
selectional preference task. In agreement with our theoretical framing, we found that an integrated approach that combines a graphical 
data structure with co-occurrence information performed better than other models which utilize only graphical structure (graphical 
models with edges based on similarity rather than co-occurrence data), or only co-occurrence data (spatial models). More specifically, 
we found that strong performance on our task required a specific combination of data structure, encoding type, and co-occurrence 
window size. While the encoding of adjacent co-occurrence provides a powerful information primitive given the linguistic structure 
of our artificial corpora, the graphical data structure and the spreading activation algorithm of the co-occurrence graph support 
the access to relatedness measures of successively higher orders in the same topology. Given that models like the co-occurrence graph 
are relatively new in the psychological literature, much more research is needed to establish whether such systems can be used to 
account for a broader range of semantic tasks, and whether they are a better fit to psycholinguistic data than existing models. Leaving 
much of this work for future research, we are currently pursuing follow-up questions that further probe the capabilities of the proposed 
model, and extensions thereof in more complex tasks. 

Lastly, our work also highlights the importance of teasing apart the individual contributions of different model components 
and their interactions to a model’s success. For example, the strong performance of the proposed model was due not only to the 
graphical structure, but also the spreading activation-based algorithm and the encoding of co-occurrence. This highlights the 
importance of systematically exploring a large modeling parameter space. While doing so can yield many suboptimal configurations, 
it enabled us to discover rare configurations which stood out above the rest, and to better understand the full potential and limitations 
of our proposed model. Researchers that do not undertake extensive investigation of parameter dimensions should interpret their 
results with caution. 

Broadly, our work is a first step towards realizing the vision outlined by Kumar et al., (2021) concerning the role of graphical 
structure in learning from naturalistic data:   

 
...one way to reconceive semantic networks may be to use natural language (the proxy for which is typically large 
text corpora) and other nonlinguistic sources of information (such as images, phonology, and affective stimuli) as a 
starting point from which relational and concept learning occurs, and then augment this learning process with 
processing mechanisms that directly follow from a network-based perspective. (p.18) 
 

In accordance with this idea, we look forward to more research on systems that operate directly on naturalistic input and encode this 
data in a graphical data structure.
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Appendix A 
Argument Structure Rules 

Table A1: Rules Governing Which Entities are Allowed to Perform Which Actions 
 Agent-Verb Relation 
 Human  Carniv

ore 
 Herbivore1  Herbivore2  Herbivore3  

rest 1  1  1  1  1  
search 1  1  1  1  1  

lay_down 1  1  1  1  1  
sleep 1  1  1  1  1  

wake_up 1  1  1  1  1  
yawn 1  1  0  1  1  

Stretch 1  1  0  1  0  
get_up 1  1  1  1  1  
go_to 1  1  1  1  1  

throw_(spear)_at 1  0  0  0  0  
chase 1  1  0  0  0  
shoot 1  0  0  0  0  
catch 1  1  0  0  0  
trap 1  0  0  0  0  
stab 1  0  0  0  0  

gather 1  0  0  0  0  
butcher 1  0  0  0  0  

cook 1  0  0  0  0  
eat 1  1  1  1  1  
peel 1  0  0  0  0  
crack 1  0  0  0  0  
drink 1  1  1  1  1  
reach 0  0  1  1  1  

 Verb-Patient Relation 
 Hum

an 
 Herbivore1  Herbivore2  Herbivore3  Nut  Fruit  Plant  Liquid  Location 

go_to 1  1  1  1  1  1  1  0   1 
throw_(spear)_a
t 

0   0   0   1  0   0   0   0   0  

chase 1  0   1  1  0   0   0   0   0  
shoot 0   0   1   0  0   0   0   0   0  
catch 0   1  1  1  0   0   0   0   0  
trap 0   1  0   0   0  0  0  0  0 
stab 0   1  0  0   0   0   0   0   0  
gather 0   1  1  1  0   0   0   0   0  
butcher 0   1  1  1  0   0   0   0   0  
cook 0   1  1  1  0   0   0   0   0  
eat 0  1  1  1  1  1  1  0  0 
peel 0   0   0   0   0   1  0   0   0  
crack 0   0   0   0   1  0   0   0   0  
drink 0   0   0   0   0   0   0   1    0  
reach 0   0   0   0   0   0   1  0   0  
 
Note. Rules are separated by whether the entity is an agent or a patient. Columns are labeled by 5 agent noun categories for the agent-
verb pairs and 9 patient noun categories for the verb-patient pairs, each of which contains three nouns with identical behavior. Rows 
are labeled by verbs. Only transitive verbs are included in verb-patient pairs. 
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Appendix B 
An Example Artificial Corpus 

Table B1  
First 50 Sentences of a Randomly Selected Sampling Corpus 

Sentence 1-10  Sentence 11-20  Sentence 21-30  Sentence 31-
40 

 Sentence 41-50 

Marya go_to riverp  rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

Kima go_to riverp  rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

wolfa go_to riverp  rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

tigera go_to riverp  rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

 bisona go_to 
riverp 

rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

 bisona go_to 
riverp 

rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

 bisona go_to 
riverp 

rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

 bisona go_to 
riverp 

rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

 bisona go_to 
riverp 

rabbita go_to 
riverp 

 squirrela go_to 
riverp 

 boara go_to 
riverp 

 ibexa go_to 
riverp 

 bisona go_to 
riverp 

 
Note. The randomly sampled corpus has 17719 sentences. Nouns in sentences are marked by thematic roles.  Consecutive and 
identical sentences occur because there are multiple entities (e.g. multiple members of tigera) engaging in identical behavior in the 
simulated world. 
 

Appendix C 
 
Consistency of the Artificial Corpora and Robustness of the Results 

To show that the corpora generated for different simulations of the hunter-gatherer world are consistent in terms of their 
distributional semantic properties, we calculated the average pairwise correlation of the corpus-derived target relatedness scores. The 
result indicates that there is little variance in the distributional semantic structure of corpora across different simulations. We also 
conducted the same analysis on model-derived relatedness scores, and found that most models behaved consistently across different 
corpora. The consistency of the corpus and model predictions across runs suggest our results are robust against variance caused by the 
randomness in our simulations.  

In this section, we provide more details about the methods used to produce these results. First, for each corpus, the target 
relatedness between each verb and noun (separated by thematic role) were grouped by the semantic category of the noun (e.g. 
HUMAN, CARNIVORE). We did this because the vocabularies across corpora might differ slightly. This can happen if, for instance, 
an inanimate entity was not engaged in any event due to the random nature of the simulation of the hunter-gatherer world. In some 
simulations, for instance, the word apple does not occur in the corpus because no apple was eaten by any agent. By collapsing nouns 
to their category, we guaranteed that, at the level of the noun category, there would be no missing data. As an example, if the pairs 
Marya-crack and Kima-crack are related with strength 6 and 8, respectively, the target relatedness at the level of the category HUMAN 
would be 7, for that corpus. In this way, we obtained the target relatedness between each verb and all 10 noun categories for all 10 
corpora. A portion of the results (for corpus 1 and the verb going_to) are shown in Table C1. The target relatedness in each row is the 
average relatedness derived from the corpus, between the verb going_to and all members of an entity category indicated by that row. 
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Table C1: Collapsed target relatedness for verb going_to in corpus 1.  
Verb  Noun category  Thematic Role Target 

relatedness 
going_to  HUMAN  Agent 478.5 

going_to  CARNIVORE  Agent 432.5 

going_to  L_HERBIVORE  Agent 92 

going_to  M_HERBIVORE  Agent 125 

going_to  S_HERBIVORE  Agent 133 

going_to  L_HERBIVORE  Patient 49 

going_to  M_HERBIVORE  Patient 53.5 

going_to  S_HERBIVORE  Patient 38.5 

going_to  DRINK  Patient -1 

going_to  PLANT  Patient 175 

going_to  LOCATION  Patient 630 

going_to  FRUIT  Patient -.728 

going_to  NUT  Patient -.728 

To quantify the extent to which target-derived relatedness vary across corpora, we performed the following steps: One corpus has 22 
verbs, and the other nine have the same 23 verbs, and in every corpus the verbs collocated with the same 12 out of the 14 noun 
categories (5 agent noun categories and 9 patient noun categories), resulting in the identical sized verb-noun category target 
relatedness score vectors (22 verbs times 12 categories, ending up 264 dimensions). Finally, we computed the pairwise Pearson 
correlation of the 10 vectors of average relatedness scores (one for each of the 10 corpora). Of the resulting 45 correlations we found 
that the mean was 0.98 and the standard deviation was 0.02. This shows that the corpus-derived target relatedness scores are highly 
consistent across corpora. 
 
Figure C1. Average model performance, as measured by the average Spearman rank correlation across 10 corpora.  

 
Note. Performance is separated by Encoding Type and Data Structure. Both direct and indirect word pairs are included in this analysis. 

Next, we repeated the same method for all 3024 models: For each model, the model-derived relatedness scores were 
collapsed by category, resulting in the same sized model relatedness vector for each corpus. We obtained 45 pairwise correlations and 
then averaged them. This resulted in 3024 model-specific correlations of relatedness scores averaged across the 10 corpora. We 
plotted in Figure C1 the 3024 data points in the same structured violin plot used in Figure 4, such that each of the 14 half violins 
corresponds to the 216 model variations in one of 14 conditions in Table 6. Notice that, with the exception of models in the ‘reduced-
correlation’ condition, the average correlation is very high (above 0.9). In sum, these results show that most models produced 
relatively consistent inferences about verb-noun relatedness across different corpora.  
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Appendix D 
Information of the Artificial Corpora 

Table D1 
Verb-noun Pair Information of the Corpora.  

Corpus  Number of 
possible verb-

noun pairs 

 Observed verb-
noun pairs 

 Rate of observed 
pairs  

 Number of observed 
patients 

1  485  206  .425  17 

2  515  211  .410  19 

3  515  213  .414  19 

4  500  209  .418  18 

5  515  212  .412  19 

6  485  206  .425  17 

7  460  202  .455  16 

8  500  208  .416  18 

9  515  212  .412  19 

10  485  207  .427  17 

 
Note. The number of possible verb-noun pairs is the total number of possible agent-verb and verb-patient pairs. The number of 
possible agent-verb pairs is calculated by multiplying the number of observed agents with the number of observed verbs. Similarly, 
the number of possible verb-patient pairs is computed by multiplying the number of observed transitive verbs with the number of 
observed patients. For example, in corpus 1, all models observed 10 nouns in agent position and 16 nouns in patient position. Further, 
given that there are 15 transitive verbs and 21 verbs in corpus 1, the total number of possible verb-noun pairs is (10 ´ 21) + (16 ´ 15) 
= 450. 

 
 
 

Appendix E 
Overall Analysis of Model Performances for Direct Stimuli 

Table E1: Performance of the Best Spatial and Best Graphical Model on the Selectional Task Using Direct Word Pairs in Simulation 
1 

Verb-role  Co-occurrence 
Graph  

 Similarity Graph 

drink-agent  1  .733 

eat-agent  1  .903 

get_up-agent  1  .782 

go_to-agent  1  .915 

lay_down-agent  1  .782 

rest-agent  1  .782 

search-agent  1  .879 

sleep-agent  1  .782 

wake_up-agent  1  .782 
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Table E2: Performance of the Best Spatial and Best Graphical Model on the Selectional Task Using Indirect Word Pairs in 
Simulation 1 

  Agent  Patient 

Verb  Co-occurrence 
Graph  

 Co-occurrence 
Space 

 Co-occurrence 
Graph  

 Co-occurrence 
Space 

butcher  .903  .701  .938  .861 

catch  .903  .888  .938  .861 

chase  .903  .888  .936  .861 

cook  .903  .701  .938  .861 

crack  .902  .698  .881  .573 

drink  NA  NA  .665  .1 

eat  NA  NA  .983  .701 

gather  .903  .915  .990  .950 

go_to  NA  NA  .928  .983 

peel  .903  .522  .768  .417 

reach  1  .969  .714  .562 

shoot  .903  .701  .914  .564 
stab  .903  .701  .869  .563 

stretch  .939  .969  NA  NA 

throw_(spear)_at  .903  .701  .926  .564 

trap  .903  .701  .869  .563 

yawn  .988  .997  NA  NA 
 

Note. Performance is separated by each noun-verb pair tested. A cell is filled with NA if the verb does not have arguments with the 
corresponding thematic role, e.g. the verb stretch does not take any patient noun; or the nouns that the verb does not take as a direct 
argument never filled in the corresponding thematic role. For example, all the nouns that can be evaluated in the indirect condition for 
eat are the non-agent nouns like apple and water, which would never take the agent role, i.e. applea and watera are not allowed due to 
the semantic constraints in Appendix A. In this case, eat only have nouns in agent role to evaluate in the direct condition, but not in 
the indirect condition.  

Appendix F 
Performance of Top Models by Encoding Type  

Table F1 Performance of the Best Models in 14 Conditions on the Selectional Task Using Direct Word Pairs.  
  Encoding Type 
 

 
Data 

Structure 

 
 
 

Co-
occurrence 

 Unreduced Similarity (no SVD)  Reduced Similarity (SVD) 

  Distance  Cosine  Correlation  Distance  Cosine  
Correlatio

n 

Spatial   1  0.703  0.598  0.453  0.583  0.570  0.685 
Graphica
l   1  0.703  0.598  0.453  0.583  0.570  0.685 

 
Note. Performance is separated by Encoding Type. 
Table F2 Performance of the Best Models in 14 Conditions on the Selectional Task Using Indirect Word Pairs.  

  Encoding Type 

 
 

Data Structure 

 
 
 

Co-
occurrence 

 Unreduced Similarity (no SVD)  Reduced Similarity (SVD) 

  Distance  Cosine  Correlation  Distance  Cosine  
Correlatio

n 

Spatial   0.758  0.723  0.722  0.713  0.715  0.695  0.702 

Graphical   0.901  0.742  0.750  0.737  0.713  0.464  0.614 


